Advertisement

Acta Theriologica

, Volume 55, Issue 3, pp 211–222 | Cite as

Hair density in the Eurasian otter Lutra lutra and the Sea otter Enhydra lutris

  • Rachel A. Kuhn
  • Hermann Ansorge
  • Szymon Godynicki
  • Wilfried MeyerEmail author
Article

Abstract

The hair density of adult Eurasian otters Lutra lutra (Linnaeus, 1758) and sea otters Enhydra lutris (Linnaeus, 1758) was analysed using skin samples taken from frozen carcasses. Lutra lutra exhibited a mean hair density of about 70 000 hairs/cm2 (whole body, appendages excepted), the mean individual density ranging from about 60 000 to 80 000 hairs/cm2. The dominant hair type were secondary hairs (wool hairs), the hair coat comprising only 1.26% of primary hairs (PH). Secondary hair (SH) density remained constant over the body (appendages excepted), whereas a few variations in PH density were observed. Neither an influence of the sex, nor a seasonal variation of the hair coat was found, moulting seems to be continuous. Enhydra lutris had a hair density between 120 000 and 140 000 hairs/cm2, the primary hairs representing less than 1% within the hair coat. Hair density remained quite constant over the regions of the trunk but was lower at the head (about 60 000 hairs/cm2 on the cheek). The hair follicles were arranged in specific groups with different bundles of varying size, normally comprising dominant numbers of wool hair (SH) follicles. Invariably there was always a large central primary hair follicle and numerous sebaceous glands between the bundles and principally around the PH follicles. The results are discussed related to possible ecological influences on hair coat density.

Key words

Lutrinae hair coat hair follicles hair group structure seasonal variation insulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allain D. and Rougeot J. 1980. Induction of autumn moult in mink (Mustela vison) with melatonin. Reproduction Nutrition Development 20: 197–201.CrossRefGoogle Scholar
  2. Barabash-Nikiforov I. 1935. The sea otters of the Commander Islands. Journal of Mammalogy 16: 255–260.CrossRefGoogle Scholar
  3. Bassett C. F. and Llewellyn L. M. 1949. The moulting and fur growth pattern in the adult mink. The American Midland Naturalist 42: 751–756.CrossRefGoogle Scholar
  4. Bollhorn M. 1999. Histologische und histochemische Untersuchungen am Integument des Seehunds. PhD thesis, University of Veterinary Medicine Hannover, Hannover: 1–160.Google Scholar
  5. Bubenik G. A. 1996. Morphological investigations of the winter coat in white tailed deer: Differences in skin, glands, and hairs structure of various regions. Acta Theriologica 41: 73–82.Google Scholar
  6. Conrad F. and Paus R. 2004. Estrogens and the hair follicle. Journal der Deutschen Dermatologischen Gesellschaft 2: 412–423.CrossRefPubMedGoogle Scholar
  7. Dawson T. J. and Fanning F. D. 1981. Thermal and energetic problems of semiaquatic mammals: A study of the Australian water rat, including comparisons with the platypus. Physiological and Biochemical Zoology 54: 285–296.Google Scholar
  8. De Jongh A. 1986. The underwater locomotion of the European otter (Lutra lutra l.). MSc thesis, State University of Groningen, Groningen: 1–97.Google Scholar
  9. Estes J. A. and Bodkin J. L. 2002. Otters. [In: Encyclopedia of Marine Mammals. W. F. Perrin, B. Wuersig and J. G. M. Thewissen, eds]. Academic Press, San Diego — Tokyo: 842–858.Google Scholar
  10. Fish F. E., Smelstoys J., Baudinette R. V. and Reynolds P. S. 2002. Fur does not fly, it floats: buoyancy of pelage in semi-aquatic mammals. Aquatic Mammals 28: 103–112.Google Scholar
  11. Frisch J., Øristland N. A. and Krog J. 1974. Insulation of furs in water. Comparative Biochemistry and Physiology A 47: 403–410. doi: 10.1016/0300-9629(74)90002-4CrossRefGoogle Scholar
  12. Gerrits P. O. and Smid L. 1983. A new, less toxic polymerisation system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections. Journal of Microscopy 132: 81–85.PubMedGoogle Scholar
  13. Grant T. R. and Dawson T. J. 1978. Temperature regulation in the platypus, Ornithorhynchus anatinus: Production and loss of metabolic heat in air and water. Physiological and Biochemical Zoology 51: 315–322.Google Scholar
  14. Hanstede J. G. and Gerrits P. O. 1983. The effects of embedding in water-soluble plastics on the final dimensions of liver sections. Journal of Microscopy 131: 79–86.PubMedGoogle Scholar
  15. Harper R. J. and Jenkins D. 1982. Moult in the European Otter (Lutra lutra). Journal of Zoology, London 197: 298–299.Google Scholar
  16. Heptner V. G. and Naumov N. P. 1974. Die Säugetiere der Sowjetunion, Vol II. Gustav Fischer Verlag, Jena: 837–885.Google Scholar
  17. Johansen K. 1962. Buoyancy and insulation in the muskrat. Journal of Mammalogy 43: 64–68. doi: 10.2307/1376880CrossRefGoogle Scholar
  18. Johnson E. 1970. Moulting cycles. Mammal Review 1: 198–208. doi: 10.1111/j.1365-2907.1972.tb00091.xCrossRefGoogle Scholar
  19. Kaszowski S., Rust C. C. and Shackelford R. M. 1970. Determination of hair density in the mink. Journal of Mammalogy 51: 27–34.CrossRefGoogle Scholar
  20. Kenyon K. W. 1969. The Sea otter in the eastern Pacific Ocean. North American Fauna 68: 1–352.CrossRefGoogle Scholar
  21. Korhonen H. and Harri M. 1986. Comparison of hair coat structure between the raccoon dog and blue fox. Zeitschrift für Säugetierkunde 51: 281–288.Google Scholar
  22. Kruuk H. 2006. Otters: ecology, behaviour and conservation. Oxford University Press, Oxford: 1–265.Google Scholar
  23. Kuhn R. 2009. Comparative analysis of structural and functional hair coat characteristics, including heat loss regulation, in the Lutrinae (Carnivora: Mustelidae). PhD thesis, University of Hamburg, Hamburg: 1–225.Google Scholar
  24. Ling J. K. 1970. Pelage and molting in wild animals with special reference to aquatic forms. Quarterly Review of Biology 45: 15–54.Google Scholar
  25. Meyer W. 1986. Die Haut des Schweines (The porcine integument). Schlütersche Verlaganstalt, Hannover: 1–228. or]Meyer W. 2009. Hair follicles in domesticated mammals with comparison to laboratory animals and humans. [In: Hair Loss Disorders in Domestic Animals. L. Mecklenburg, M. Linek and D. J. Tobin, eds]. Blackwell Publishing, Ames: 43–62.Google Scholar
  26. Meyer W., Neurand K. and Schwarz R. 1980. Der Haarwechsel der Haussäugetiere. II. Topographischer Ablauf, Vergleich Haustier-Wildtier und Steuerungsmechanismen. Deutsche Tierärztliche Wochenschrift 87: 96–102.Google Scholar
  27. Meyer W., Seegers U. and Bock M. 2008. Annual secretional activity of the skin glands in the Southern pudu (Pudu puda Molina 1782, Cervidae). Mammalian Biology 73: 392–395. doi: 10.1016/j.mambio.2007.10.006CrossRefGoogle Scholar
  28. Meyer W., Seger H. and Hülmann G. 2002. SEM-Atlas on the Hair Cuticle Structure of Central European Mammals. Verlag Schaper, Alfeld-Hannover: 1–248.Google Scholar
  29. Meyer W., Uhr G., Schwarz R. and Radke B. 1982. Untersuchungen an der Haut der Europäischen Wildkatze (Felis silvestris Schreber). II. Haarkleid. Zoologisches Jahrbuch Anatomie 107: 205–234.Google Scholar
  30. Paus R. and Cotsarelis G. 1999. The biology of the hair follicles. New England Journal of Medicine 341: 491–497. doi: 10.1056/NEJM199908123410706CrossRefPubMedGoogle Scholar
  31. Reynolds P. S. 1993. Size, shape, and surface area of beaver, Castor canadensis, a semiaquatic mammal. Canadian Journal of Zoology 71: 876–882. doi: 10.1139/z93-114CrossRefGoogle Scholar
  32. Richardson K. C., Jarett L. and Finke E. H. 1960. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technology 35: 313–323.PubMedGoogle Scholar
  33. Rogers G. E. 2006. Biology of the wool follicle: an excursion into a unique tissue interaction system waiting to be re-discovered. Experimental Dermatology 15: 931–940. doi: 10.1111/j.1600-0625.2006.00512.xCrossRefPubMedGoogle Scholar
  34. Ryder M. L. 1973. Hair. Institute of Biology. Camelot Press Ltd., London and Southampton: 1–58.Google Scholar
  35. Scheffer V. B. 1964a. Estimating abundance of pelage fibres on fur seal skin. Proceedings of the Zoological Society of London 143: 37–41.Google Scholar
  36. Scheffer V. B. 1964b. Hair patterns in seals (Pinnipedia). Journal of Morphology 115: 291–304. doi: 10.1002/j.mor. 1051150211CrossRefPubMedGoogle Scholar
  37. Sokolov W. 1962. Adaptations of the mammalian skin to the aquatic mode of life. Nature 195: 464–466. doi: 10.1038/ 195464a0CrossRefGoogle Scholar
  38. Sokolov V. E. 1982. Mammal Skin. University of California Press, Berkeley: 1–695.Google Scholar
  39. Tänzer E. 1932. Haar- und Fellkunde. Reichs-Zentrale für Pelztier- und Rauchwaren-Forschung, Leipzig, Germany.Google Scholar
  40. Tarasoff F. J. 1972. Comparative aspects of the hind limbs of the river otter, sea otter and seals. [In: Functional anatomy of marine mammals, Vol. 1. R. J. Harrison, ed]. Academic Press, London and New York: 333–359.Google Scholar
  41. Tarasoff F. J. 1974. Anatomical adaptations in the River otter, sea otter and harp seal with reference to thermal regulation. [In: Functional anatomy of marine mammals, Vol. 2. R. J. Harrison, ed]. Academic Press, London: 111–141.Google Scholar
  42. Tarasoff F. J., Bisaillon A., Piérard J. and Whitt A. P. 1972. Locomotory patterns and external morphology of the river otter, sea otter, and harp seal. Canadian Journal of Zoology 50: 915–929. doi: 10.1139/z72-124CrossRefPubMedGoogle Scholar
  43. Toldt K. 1933. Das Haarkleid der Pelztiere. Deutsche Gesellschaft für Kleintier- und Pelztierzucht, Leipzig: 1–291.Google Scholar
  44. Tregear R. T. 1965. Hair density, wind speed and heat loss in mammals. Journal of Applied Physiology 20: 796–801.PubMedGoogle Scholar
  45. Williams T. D., Allen D. D., Groff J. M. and Glass R. L. 1992. An analysis of California sea otter (Enhydra lutris) pelage and integument. Marine Mammal Science 8: 1–18.CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Bialowieza, Poland 2010

Authors and Affiliations

  • Rachel A. Kuhn
    • 1
    • 2
  • Hermann Ansorge
    • 3
  • Szymon Godynicki
    • 4
  • Wilfried Meyer
    • 5
    Email author
  1. 1.Aktion Fischotterschutz e.V.Otter-ZentrumHankensbüttelGermany
  2. 2.Institute of ZoologyUniversity of HamburgHamburgGermany
  3. 3.Senckenberg Museum of Natural History GörlitzGörlitzGermany
  4. 4.Department of Anatomy of AnimalsPoznań University of Life SciencesPoznańPoland
  5. 5.Institute of AnatomyUniversity of Veterinary Medicine HannoverHannoverGermany

Personalised recommendations