Skip to main content
Log in

Graphene Field-Effect Transistor on a Calcium Fluoride Substrate

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report the electrical-transport properties of a monolayer graphene device put on a 500 µm-thick calcium fluoride (CaF2) single-crystal substrate. From the gate-voltage dependence, clear n-type behavior was observed in a graphene/CaF2 field-effect transistor. This can be understood on the basis of the strong interaction between graphene and the CaF2 substrate, where the substantial electron wavefunction overlap between graphene and fluorine atoms of CaF2 occurs. This observation indicates that the strong n-type doping to graphene is possible only through the contact of graphene with the fluorinated substrate due to the strong electron affinity of a fluorine atom. Various electrical and optical characterizations for the graphene on CaF2 substrates are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov et al., Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. K. S. Novoselov et al., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).

    Article  ADS  Google Scholar 

  3. L. Tao et al., Nat. Nanotechnol. 10, 227 (2015).

    Article  ADS  Google Scholar 

  4. L. Li et al., Nat. Nanotechnol. 9, 372 (2014).

    Article  ADS  Google Scholar 

  5. J. Kang, W. Liu and K. Banerjee, Appl. Phys. Lett. 104, 093106 (2014).

    Article  ADS  Google Scholar 

  6. W. Liu et al., Nano Lett. 13, 1983 (2013).

    Article  ADS  Google Scholar 

  7. L. Yang et al., Nano Lett. 14, 6275 (2014).

    Article  ADS  Google Scholar 

  8. C. R. Dean et al., Nat. Nanotechnol. 5, 722 (2010).

    Article  ADS  Google Scholar 

  9. G-H. Lee et al., ACS Nano 7, 7931 (2013).

    Article  Google Scholar 

  10. J. Xue et al., Nat. Mater. 10, 282 (2011).

    Article  ADS  Google Scholar 

  11. N. Park et al., ACS Nano 9, 10729 (2015).

    Article  Google Scholar 

  12. S. Bidmeshkipour et al., Appl. Phys. Lett. 107, 173106 (2015).

    Article  ADS  Google Scholar 

  13. X. Hong et al., Phys. Rev. Lett. 102, 136808 (2009).

    Article  ADS  Google Scholar 

  14. G-X. Ni et al., ACS Nano 6, 3935 (2012).

    Article  Google Scholar 

  15. K. T. Kang et al., Adv. Mater. 29, 1700071 (2017).

    Article  Google Scholar 

  16. B. Lee et al., Appl. Phys. Lett. 97, 043107 (2010).

    Article  ADS  Google Scholar 

  17. H. Liu, K. Xu, X. Zhang and P. D. Ye, Appl. Phys. Lett. 100, 152115 (2012).

    Article  ADS  Google Scholar 

  18. H-Y. Chang et al., ACS Nano 7, 5446 (2013).

    Article  ADS  Google Scholar 

  19. D. F. Bezuidenhout, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, Burlington, 1997).

  20. A. Koma, K. Saiki and Y. Sato, Appl. Surf. Sci. 41–42, 451 (1990).

    Article  ADS  Google Scholar 

  21. Y. Wang et al., ACS Nano 5, 9927 (2011).

    Article  Google Scholar 

  22. D. Yoon et al., J. Korean Phys. Soc. 55, 1299 (2009).

    Article  ADS  Google Scholar 

  23. Y. Duhee and H. Cheong, New Phys.: Sae Mulli 60, 261 (2010).

    Google Scholar 

  24. R. Wang et al., ACS Nano 5, 408 (2011).

    Article  Google Scholar 

  25. X. Fan, R. Nouchi and K. Tanigaki, J. Phys. Chem. C 115, 12960 (2011).

    Article  Google Scholar 

  26. P. Joshi et al., J. Phys.: Condens. Matter 22, 334214 (2010).

    Google Scholar 

  27. A. Veligura et al., J. Appl. Phys. 110, 113708 (2011).

    Article  ADS  Google Scholar 

  28. G. B. Barin et al., Carbon 84, 82 (2015).

    Article  Google Scholar 

  29. J. H. Chen et al., Adv. Mater. 19, 3623 (2007).

    Article  Google Scholar 

  30. J. Fan et al., Solid State Commun. 151, 1574 (2011).

    Article  ADS  Google Scholar 

  31. D. B. Farmer et al., Nano Lett. 9, 388 (2008).

    Article  ADS  Google Scholar 

  32. K. Kumar, Y-S. Kim and E-H. Yang, Carbon 65, 35 (2013).

    Article  Google Scholar 

  33. H. Park et al., Nanotechnology 29, 415303 (2018).

    Article  Google Scholar 

  34. H. Park et al., 2D Mater. 3, 021003 (2016).

    Article  Google Scholar 

  35. A. Pirkle et al., Appl. Phys. Lett. 99, 122108 (2011).

    Article  ADS  Google Scholar 

  36. B. Son et al., Sci. Rep. 7, 18058 (2017).

    Article  ADS  Google Scholar 

  37. J. W. Suk et al., Nano Lett. 13, 1462 (2013).

    Article  ADS  Google Scholar 

  38. O. Sul et al., Nanotechnology 27, 505205 (2016).

    Article  Google Scholar 

  39. J. Sun, H. O. Finklea and Y. Liu, Nanotechnology 28, 125703 (2017).

    Article  ADS  Google Scholar 

  40. M. Wintersgill, J. Fontanella, C. Andeen and D. Schuele, J. Appl. Phys. 50, 8259 (1979).

    Article  ADS  Google Scholar 

  41. Y. Zhang, Y-W. Tan, H. L. Stormer and P. Kim, Nature 438, 201 (2005).

    Article  ADS  Google Scholar 

  42. Y. Y. Illarionov et al., Nat. Electron. 2, 230 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Korea Electric Power Corporation (No. R18XA06-54), and the Global Research & Development Center Program (No. 2018K1A4A3A01064272) through the NRF funded by the Ministry of Science and ICT, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tuan Khanh Chau or Dongseok Suh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chau, T.K., Suh, D. Graphene Field-Effect Transistor on a Calcium Fluoride Substrate. J. Korean Phys. Soc. 77, 879–883 (2020). https://doi.org/10.3938/jkps.77.879

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.879

Keywords

Navigation