Skip to main content
Log in

Extended Gaussian Filtering for Noise Reduction in Spectral Analysis

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We present a method of reducing noise in spectra that is based on eliminating low-order derivatives of reciprocal-space (RS) filter functions, yet ensuring that the functions roll off smoothly to minimize Gibbs oscillations. The approach takes advantage of the fact that information and noise are separated in RS. The method preserves as much information as possible, while reducing or even eliminating unwanted contributions (noise). To demonstrate the method we apply it to a model spectrum, data including an XPS spectrum of S2p in hierarchical NiCo2S4 nanosheets, and the Raman spectrum of 10-layer film of FePS3 with polarization direction of 90° with respect to the a-axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Hove, Phys. Rev. 89, 1189 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  2. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  Google Scholar 

  3. A. Savitzky and M. J. E. Golay, Anal. Chem. 36, 1627 (1964).

    Article  ADS  Google Scholar 

  4. J. Steinier, Y. Termonia and J. Deltour, Anal. Chem. 44, 1906 (1972).

    Article  Google Scholar 

  5. T. H. Edwards and P. D. Willson, Appl. Spectrosc. 28, 541 (1974).

    Article  ADS  Google Scholar 

  6. H. H. Madden, Anal. Chem. 50, 1383 (1978).

    Article  Google Scholar 

  7. J. Luo, K. Ying and J. Bai, Signal Process. 85, 1429 (2005).

    Article  Google Scholar 

  8. J. Luo, K. Ying, P. He and J. Bai, Digit. Signal Process. 15, 122 (2005).

    Article  Google Scholar 

  9. J. F. Kaiser and W. A. Reed, Rev. Sci. Instrum. 48, 1447 (1977).

    Article  ADS  Google Scholar 

  10. D. E. Aspnes, Surf. Sci. 135, 284 (1983).

    Article  ADS  Google Scholar 

  11. S. Kelso and D. Aspnes, J. Phys. Colloques 44, C10–45 (1983).

    Article  Google Scholar 

  12. D. E. Aspnes, Sol. Energy Mater. Sol. Cells 32, 413 (1994).

    Article  Google Scholar 

  13. P. Barak, Anal. Chem. 67, 2758 (1995).

    Article  Google Scholar 

  14. D. K. Hoffman, D. J. Kouri and E. Pollak, Comput. Phys. Commun. 147, 759 (2002).

    Article  ADS  Google Scholar 

  15. D. E. Aspnes, V. L. Le and Y. D. Kim, J. Vac. Sci. Technol. B 37, 51205 (2019).

    Article  Google Scholar 

  16. V. L. Le, T. J. Kim, Y. D. Kim and D. E. Aspnes, J. Vac. Sci. Technol. B 37, 52903 (2019).

    Article  Google Scholar 

  17. D-Y. Kim et al., Sci. Rep. 7, 9764 (2017).

    Article  ADS  Google Scholar 

  18. J-U. Lee et al., Nano Lett. 16, 7433 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2019R1H1A2079786) and by the Development of Industrial Measuring Equipment Technology funded by the Korea Research Institute of Standards and Science (KRISS-2019-GP2019-0019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. D. Kim or D. E. Aspnes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, V.L., Kim, T.J., Kim, Y.D. et al. Extended Gaussian Filtering for Noise Reduction in Spectral Analysis. J. Korean Phys. Soc. 77, 819–823 (2020). https://doi.org/10.3938/jkps.77.819

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.819

Keywords

Navigation