Skip to main content
Log in

Pore Structure Analysis to Adsorb NOx Gas based on Porous Materials

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We studied the adsorption of nitrogen oxides according to various porous materials room temperature, which can effectively to adsorb the nitrogen oxides. Based on results of measuring NOx concentration, the activated carbon materials have been shown to adsorb NOx well, and they have been shown to more efficiently removing NO2, which is very harmful to the environment. In particular, in the case of the coconut activated carbon, the removal efficiency of NO and NO2 was very excellent, and the removal rate of was 30% for 100 minutes and 19.5% for 840 minutes. Our measurement results confirmed that the activated carbon materials have a very large specific surface area and pore volume. In addition, the coconut activated carbon appears to have a large specific surface area and pore volume to remove NOx over a long period of time. Based on the experimental results, it is expected to be used as a material that efficiently removes nitrogen oxides at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. F. Currie, A. Essalik and J-C. Marusic, Sens. Actuators B 59, 235 (1999).

    Article  Google Scholar 

  2. H. Ritchie and M. Roser, Our World in Data (2017), https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions.

  3. K. Gillingham and J. H. Stock, J. Econ. Perspect. 32, 53 (2018).

    Article  Google Scholar 

  4. S. Sillman, Atmos. Environ. 33, 1821 (1999).

    Article  ADS  Google Scholar 

  5. S-B. Lee et al., Aerosol Air Qual. Res. 10, 540 (2010).

    Article  Google Scholar 

  6. H. J. Seo et al., Appl.Sci.Converg.Technol. 26, 2180 (2017).

    Article  Google Scholar 

  7. O. I. Polivaev et al., IOP Conf. Ser.: Mater. Sci. Eng. 632, 012027 (2019).

    Article  Google Scholar 

  8. C. Wang, Y. Liu, S. Zheng and A. Jiang, Energy 153, 149 (2018).

    Article  Google Scholar 

  9. J. V. Caneghem, J. D. Greef, C. Block and C. Vandecasteele, J. Clean. Prod. 112, 4452 (2016).

    Article  Google Scholar 

  10. H. Yu et al., Nanomaterials 10, 897 (2020).

    Article  Google Scholar 

  11. M. Xu et al., Constr. Build. Mater. 221, 375 (2019).

    Article  Google Scholar 

  12. O. I. Polivaevm et al., IOP Conf. Ser.: Mater. Sci. Eng. 632, 012027 (2019).

    Article  Google Scholar 

  13. V. Valtchev and L. Tosheva, Chem. Rev. 113, 6734 (2013).

    Article  Google Scholar 

  14. Y-C. Chiang, P-C. Chiang and C-P. Huang, Carbon 39, 523 (2001).

    Article  Google Scholar 

  15. B. Kasprzyk-Hordern, Adv. Colloid Interface Sci. 110, 19 (2004).

    Article  Google Scholar 

  16. J. Li et al., Catal. Today 175, 147 (2011).

    Article  Google Scholar 

  17. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).

    Article  ADS  Google Scholar 

  18. E. P. Barrett, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).

    Article  Google Scholar 

  19. K. Silas, W. A. W. A. K. Ghani, T. S. Y. Choong and U. Rashid, Catal. Rev. 61, 134 (2019).

    Article  Google Scholar 

  20. A. M. Rubel and J. M. Stencel, Energy Fuels 10, 704 (1996).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20181110200070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Yoon Park or Young Joon Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, T., La, Y., Jeon, O.S. et al. Pore Structure Analysis to Adsorb NOx Gas based on Porous Materials. J. Korean Phys. Soc. 77, 790–796 (2020). https://doi.org/10.3938/jkps.77.790

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.790

Keywords

Navigation