Skip to main content

Subtraction Method for an Effective Quasi-monoenergetic Neutron Beam by Using Continuous Energy Spectra

Abstract

The cross sections of 89Y(n, 3n)87m,87gY and 209Bi(n, 4n)206Bi reactions at a neutron energy of 30 MeV are measured by making use of neutron beams of continuous energy spectra and a subtraction method. By impinging proton beams of 30 and 35 MeV to a thick beryllium target, neutron beams of continuous and broad energy spectra are produced and are guided to Y and Bi sample targets. The difference between the two neutron spectra generated by two neighboring proton energies is found to be peaked in a narrow energy range and thus can be regarded as quasi-monoenergetic, which can be used to extract (n, xn) cross sections. The uncertainty in the neutron fluence is reduced by analyzing the activities of aluminum and niobium reference samples placed on top of the Y and Bi samples. The use of a subtraction method by employing neutron beams of continuous energy spectra gives us the 89Y(n, 3n)87m,87gY and 209Bi(n, 4n)206Bi cross sections in fair agreement with the existing experimental data and nuclear data libraries.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J-P. Revol, Prog. Nucl. Energy 38, 153 (2001).

    Article  Google Scholar 

  2. [2]

    P. Yvon and F. Carré, J. Nucl. Mater. 385, 217 (2009).

    Article  ADS  Google Scholar 

  3. [3]

    T. Wegener et al., Nucl. Mater. Eng. 9, 394 (2016).

    Google Scholar 

  4. [4]

    B. F. Gromov et al., Nucl. Eng. Des. 173, 207 (1997).

    Article  Google Scholar 

  5. [5]

    Y. Uno et al., in Proceedings of the 9th International Symposium on Reactor Dosimetry, edited by H. Aït Abderrahim, P. D’hondt and B. Ošmera (Prague, Czech Republic, September 2–6, 1996).

  6. [6]

    V. Wagner et al., J. Phys.: Conf. Ser. 366, 012047 (2012).

    Google Scholar 

  7. [7]

    P. Chudoba et al., Nucl. Sci. Eng. 191, 150 (2018).

    Article  Google Scholar 

  8. [8]

    E. Kim et al., Nucl. Sci. Eng. 129, 209 (1998).

    Article  Google Scholar 

  9. [9]

    M. S. Uddin et al., Ann. Nucl. Energy 36, 1133 (2009).

    Article  Google Scholar 

  10. [10]

    J. Vrzalová et al., Nucl. Instrum. Methods Phys. Res. Sect. A 726, 84 (2013).

    Article  ADS  Google Scholar 

  11. [11]

    M. Zaman et al., Eur. Phys. J. A 51, 104 (2015).

    Article  ADS  Google Scholar 

  12. [12]

    M. Majerle et al., Nucl. Phys. A 953, 139 (2016).

    Article  ADS  Google Scholar 

  13. [13]

    M. E. Gooden et al., Phys. Rev. C 96, 024622 (2017).

    Article  ADS  Google Scholar 

  14. [14]

    O. Svoboda et al., J. Korean Phys. Soc. 59, 1709 (2011).

    Article  ADS  Google Scholar 

  15. [15]

    H. Harano and R. Nolte, Metrologia 48, S292 (2011).

    Article  ADS  Google Scholar 

  16. [16]

    M. Ibaraki et al., J. Nucl. Sci. Technol. 39, 405 (2002).

    Article  Google Scholar 

  17. [17]

    MC-50, www.kirams.re.kr.

  18. [18]

    J. W. Shin et al., J. Korean Phys. Soc. 59, 2022 (2011).

    Article  ADS  Google Scholar 

  19. [19]

    J. K. Park et al., J. Korean Phys. Soc. 58, 1511 (2011).

    Article  ADS  Google Scholar 

  20. [20]

    J. W. Shin et al., Nucl. Instrum. Methods Phys. Res. Sect. A 797, 304 (2015).

    Article  ADS  Google Scholar 

  21. [21]

    E. J. In et al., EPJ Web Conf. 146, 11026 (2017).

    Article  Google Scholar 

  22. [22]

    K. J. Min et al., EPJ Web Conf. 146, 11043 (2017).

    Article  Google Scholar 

  23. [23]

    TENDL-2015, available at https://tendl.web.psi.ch/tendl_2015/tendl2015.html.

  24. [24]

    EAF-2010, available at https://www.oecd-nea.org/dbforms/data/eva/evatapes/eaf_2010/.

  25. [25]

    J. W. Shin and T-S. Park, Nucl. Instrum. Methods Phys. Res. Sect. B 342, 194 (2015).

    Article  ADS  Google Scholar 

  26. [26]

    K. Kawade et al., J. Nucl. Sci. Technol. 22, 851 (1985).

    Article  Google Scholar 

  27. [27]

    G. He, Z. Liu, J. Luo and X. Kong, Indian J. Pure Appl. Phys. 43, 729 (2005).

    Google Scholar 

  28. [28]

    S. P. Simakov et al., Fusion Eng. Des. 82, 2510 (2007).

    Article  Google Scholar 

  29. [29]

    K. Fang et al., Appl. Radiat. Isot. 66, 1104 (2008).

    Article  Google Scholar 

  30. [30]

    K. Kudo et al., J. Nucl. Sci. Technol. 24, 684 (1987).

    Article  Google Scholar 

  31. [31]

    J. Csikai et al., Z. Phys. A 325, 69 (1986).

    ADS  Google Scholar 

  32. [32]

    L. R. Greenwood, American Soc. of Testing and Materials Reports No. 956, 743 (1987).

  33. [33]

    L. P. Geraldo, D. L. Smith and J. W. Meadows, Ann. Nucl. Energy 16, 293 (1989).

    Article  Google Scholar 

  34. [34]

    N. V. Kornilov et al., Phys. Rev. C 39, 789 (1989).

    Article  ADS  Google Scholar 

  35. [35]

    Y. Ikeda et al., in Proceedings of the International Conference on Nuclear Data for Science and Technology, edited by Syed M. Qaim (Juelich, Germany, May 13–17, 1991)

  36. [36]

    Y. Uwamino, H. Sugita, Y. Kondo and T. Nakamura, Nucl. Sci. Eng. 111, 391 (1992).

    Article  Google Scholar 

  37. [37]

    Y. Ikeda et al., J. Nucl. Sci. Technol. 30, 870 (1993).

    Article  Google Scholar 

  38. [38]

    R. Coszach et al., Phys. Rev. C 61, 064615 (2000).

    Article  ADS  Google Scholar 

  39. [39]

    W. Mannhart and D. Schmidt, Report of the Physikalisch-Technischen Bundesanstalt, No. 53, 2007.

  40. [40]

    B. Lalremruata, S. D. Dhole, S. Ganesan and V. N. Bhoraskar, Nucl. Phys. A 821, 23 (2009).

    Article  ADS  Google Scholar 

  41. [41]

    T. Iguchi, K. Nakata and M. Nakazawa, J. Nucl. Sci. Technol. 24, 1076 (1987).

    Article  Google Scholar 

  42. [42]

    A. Mannan and S. M. Qaim, Phys. Rev. C 38, 630 (1988).

    Article  ADS  Google Scholar 

  43. [43]

    Y. Ikeda et al., JAERI Report No. 1312, 1988.

  44. [44]

    R. Woelfle et al., Int. J. Appl. Radiat. Isot. 39, 407 (1988).

    Article  Google Scholar 

  45. [45]

    D. C. Santry and R. D. Werner, Can. J. Phys. 68, 582 (1990).

    Article  ADS  Google Scholar 

  46. [46]

    D. L. Smith et al., in Proceedings of the International Conference on Nuclear Data for Science and Technology, edited by Syed M. Qaim (Juelich, Germany, May 13–17, 1991).

  47. [47]

    N. I. Molla, R. U. Miah, M. Rahman and A. Akhter, in Proceedings of the International Conference on Nuclear Data for Science and Technology, edited by Syed M. Qaim (Juelich, Germany, May 13–17, 1991).

  48. [48]

    A. A. Filatenkov et al., Khlopin Radiev. Inst., Leningrad Reports, No. 252, 1999.

  49. [49]

    B. Kiraly, J. Csikai and R. Doczi, Nucl. Sci. Eng. 129, 164 (1998).

    Article  Google Scholar 

  50. [50]

    A. Fessler et al., Nucl. Sci. Eng. 134, 171 (2000).

    Article  Google Scholar 

  51. [51]

    M. Honusek et al., J. Korean Phys. Soc. 59, 1374 (2011).

    Article  ADS  Google Scholar 

  52. [52]

    M. Majerle et al., J. Korean Phys. Soc. 59, 1856 (2011).

    Article  Google Scholar 

  53. [53]

    I. Pasha et al., J. Radioanal. Nucl. Chem. 320, 561 (2019).

    Article  Google Scholar 

  54. [54]

    N. Otuka et al., Radiat. Phys. Chem. 140, 502 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Korea government MSIT through the National Research Foundation (2013M7A1A1075764, 2018M2A8A2083829 and 2019H1D3A2A01058189), and in part by the Institute for Basic Science (IBS-R031-D1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seung-Woo Hong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

In, E.J., Min, K.J., Bak, SI. et al. Subtraction Method for an Effective Quasi-monoenergetic Neutron Beam by Using Continuous Energy Spectra. J. Korean Phys. Soc. 77, 740–747 (2020). https://doi.org/10.3938/jkps.77.740

Download citation

Keywords

  • neutron activation analysis
  • (n,xn) cross section
  • 89Y
  • 209Bi