Study on Treatment Planning for the Prostate in Proton Therapy with Oxygen Enhancement Ratio Effect


The purpose of this study was to investigate the oxygen enhancement ratio (OER) effects on treatment planning for a hypoxic prostate tumor with proton scanning beams. Two different OER-based dose calculation models (the average model and the voxel model) were investigated by using hypoxic tumor models in this simulation study. For the hypoxic tumor model, an oxygen distribution with a range of 2.4–9.4 mmHg was used according to the clinical data. The results given by the average model and the voxel model were compared for 50% and 90% tumor control probabilities with variations in the hypoxic tumor volume and fractionation. Comparison between the treatment plans with OER-based higher predicted dose and with the conventional prescription dose was conducted to investigate the organ-at-risk (OAR) doses for the prostate case. The average model showed a higher calculated dose than the voxel model. The voxel model with a 50% control probability showed good agreement with the current prescription dose. The OER values of the average model ranged from 1.05 to 1.25, which were applied to the whole tumor volume in treatment planning. The voxel-model-based OERs were higher (1.50–1.75) than those of average model, and these OERs should be applied only for the hypoxic boost region. Regarding treatment plans, the doses of the rectum and the bladder were reduced to the tolerable range V80Gy (volume receiving equal to or greater than 80Gy) < 15% and V75Gy (volume receiving equal to or greater than 75Gy) < 15% respectively after an optimization, but the maximum dose to femoral heads was higher than 50 Gy. In conclusion, we investigated the possible ranges of the OER (1.3–1.8) for proton-beam treatment of prostate cases. A dose escalation of up to about 1.8 times can be applied for the small hypoxic region. This result, which was obtained using a model study, should be verified through clinical experiment.

This is a preview of subscription content, log in to check access.


  1. [1]

    A. J. Lomax et al., Med. Phys. 31, 3150 (2004).

    Article  Google Scholar 

  2. [2]

    I. Yeo et al., Radiat. Oncol. 10, 213 (2015).

    Article  Google Scholar 

  3. [3]

    W. Cao et al., Cancers 7, 574 (2015).

    Article  Google Scholar 

  4. [4]

    N. J. Sanfilippo and B. T. Cooper, Am. J. Clin. Exp. Urol. 2, 286 (2014).

    Google Scholar 

  5. [5]

    B. S. Hoppe, C. Bryant and H. M. Sandler, J. Urol. 193, 1089 (2015).

    Article  Google Scholar 

  6. [6]

    H. Chung et al., J. Appl. Clin. Med. Phys. 18, 32 (2017).

    Article  Google Scholar 

  7. [7]

    D. J. McKenna, R. Errington and K. Pors, J. Cancer Metastasis Treat. 4, 1 (2018).

    Article  Google Scholar 

  8. [8]

    A. Turaka et al., Int J. Radiat. Oncol. Biol. Phys. 82, e433 (2012).

    Article  Google Scholar 

  9. [9]

    M. Milosevic et al., Clin. Cancer Res. 18, 2108 (2012).

    Article  Google Scholar 

  10. [10]

    E. Lalonde et al., Lancet Oncol. 15, 1521 (2014).

    Article  Google Scholar 

  11. [11]

    H. B. Ragnum et al., Br. J. Cancer 112, 382 (2015).

    Article  Google Scholar 

  12. [12]

    C-T. Lee, M-K. Boss and M. W. Dewhirst, Antioxid. Redox Signal. 21, 313 (2014).

    Article  Google Scholar 

  13. [13]

    J. G. Rajendran et al., Eur. J. Nucl. Med. Mol. Imaging 30, 695 (2003).

    Article  Google Scholar 

  14. [14]

    F. Dehdashti et al., Eur. J. Nucl. Med. Mol. Imaging 30, 844 (2003).

    Article  Google Scholar 

  15. [15]

    M. Zimny et al., Eur. J. Nucl. Med. Mol. Imaging 33, 1426 (2006).

    Article  Google Scholar 

  16. [16]

    K. Hirata et al., Eur. J. Nucl. Med. Mol. Imaging 39, 760 (2012).

    Article  Google Scholar 

  17. [17]

    Y. Wang et al., PLoS ONE 12, 0173016 (2017).

    Google Scholar 

  18. [18]

    M. W. Dewhirst and S. R. Birer, Cancer Res. 76, 769 (2016).

    Article  Google Scholar 

  19. [19]

    T. Hompland et al., Cancer Res. 78, 4774 (2018).

    Article  Google Scholar 

  20. [20]

    J. P. B. O’Connor, S. P. Robinson and J. C. Waterton, Br. J. Radiol. 92, 20180642 (2019).

    Article  Google Scholar 

  21. [21]

    S. Dadgar, J. R. Troncoso and N. Rajaram, J. Biomed. Opt. 23, 067001 (2018).

    ADS  Article  Google Scholar 

  22. [22]

    T. Wenzl and J. J. Wilkens, Radiat. Oncol. 6, 171 (2011).

    Article  Google Scholar 

  23. [23]

    E. Lindblom et al., Radiat. Oncol. 9, 149 (2014).

    Article  Google Scholar 

  24. [24]

    L. Antonovic et al., J. Radiat. Res. 55, 902 (2014).

    ADS  Article  Google Scholar 

  25. [25]

    L. Antonovic, A. Dasu, Y. Furusawa and I. Tomo-Dasu, J. Radiat. Res. 56, 639 (2015).

    ADS  Article  Google Scholar 

  26. [26]

    E. Scifoni et al., Phys. Med. Biol. 58, 3871 (2013).

    Article  Google Scholar 

  27. [27]

    W. Tinganelli et al., Sci. Rep. 5, 17016 (2015).

    ADS  Article  Google Scholar 

  28. [28]

    O. Sokol et al., Phys. Med. Biol. 62, 7798 (2017).

    Article  Google Scholar 

  29. [29]

    I. Tomo-Dasu, A. Dasu and A. Brahme, Acta Oncol. 8, 1181 (2009).

    Article  Google Scholar 

  30. [30]

    L. Strigari et al., Phys. Med. Biol. 63, 065012 (2018).

    Article  Google Scholar 

  31. [31]

    V. Anferov and I. J. Das, Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 4, 149 (2015).

    Article  Google Scholar 

  32. [32]

    A. Dasu, I. Tomo-Dasu and M. Karlsson, Acta Oncol. 44, 563 (2005).

    Article  Google Scholar 

  33. [33]

    T. T. Puck and P. I. Marcus, J. Exp. Med. 103, 653 (1956).

    Article  Google Scholar 

  34. [34]

    M. Guerrero and X. A. Li, Phys. Med. Biol. 49, 4825 (2004).

    Article  Google Scholar 

  35. [35]

    P. Clint et al., Int. J. Radiat. Oncol. Biol. Phys. 70, 847 (2008).

    Article  Google Scholar 

  36. [36]

    D. J. Carlson et al., Phys. Med. Biol. 49, 4477 (2004).

    Article  Google Scholar 

  37. [37]

    T. Girinsky et al., Int. J. Radiat. Oncol. Biol. Phys. 25, 3 (1993).

    Article  Google Scholar 

  38. [38]

    M. Krmer and M. Scholz, Phys. Med. Biol. 45, 3319 (2000).

    Article  Google Scholar 

  39. [39]

    A. Dasu and I. Toma-Dasu, Acta Oncol. 51, 963 (2012).

    Article  Google Scholar 

  40. [40]

    A. Brahme and A. K. Agren, Acta Oncol. 26, 377 (1987).

    Article  Google Scholar 

  41. [41]

    B. Emami, Rep. Radiother. Oncol. 1, 35 (2013).

    Google Scholar 

  42. [42]

    Y. L. Kim et al., Prog. Med. Phys. 29, 106 (2018).

    Article  Google Scholar 

Download references


This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea governments Ministry of Science and ICT (MSIT) (No. NRF-2020R1A2C4001910 and NRF-2020M2D9A1094075).

Author information



Corresponding author

Correspondence to Byung Jun Min.

Additional information

Electronic supplementary material

The online version of this article contains a supplementary material, which is available to authorized users.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoo, S.H., Geng, H., Lam, W.W. et al. Study on Treatment Planning for the Prostate in Proton Therapy with Oxygen Enhancement Ratio Effect. J. Korean Phys. Soc. 77, 613–623 (2020).

Download citation


  • OER
  • Proton therapy
  • Average model
  • Voxel model