Implementation of a Sinusoidal Raster Scan for High-Speed Atomic Force Microscopy


To improve the speed of an atomic force microscope (AFM), one must improve the bandwidth of its components, and the lateral XY scanner is no exception. Sinusoidal raster scans provide a simple way of improving lateral scan rates without the need for additional hardware and/or complex control algorithms. However, a raster scan using a sinusoidal waveform leads to a non-uniform probesample velocity. Uniform spatial sampling of scan data can be achieved in this case by varying the sampling rate as the probe sample velocity varies. In this work, we present a field-programmable gate array (FPGA)-based implementation of a sinusoidal raster scan with uniform spatial sampling for a high-speed atomic force microscope (HS-AFM). Using a home-made HS-AFM scanner and a custom controller, we demonstrate the performance of our approach by imaging Blu-ray disk data tracks in the contact mode. While the results show images comparable to those acquired using the traditional triangular raster scans, mirroring effects are better suppressed in high-speed imaging with sinusoidal scan signals.

This is a preview of subscription content, log in to check access.


  1. [1]

    T. Ando, Biophys. Rev. 10, 285 (2018).

    Article  Google Scholar 

  2. [2]

    A. J. Fleming, Ultramicroscopy 110, 1205 (2010).

    Article  Google Scholar 

  3. [3]

    D. Croft, G. Shed and S. Devasia, J. Dyn. Syst. Meas. Control 123, 35 (2001).

    Article  Google Scholar 

  4. [4]

    G. Schitter et al., IEEE Trans. Control Syst. Technol. 15, 906 (2007).

    Article  Google Scholar 

  5. [5]

    K. Miyata et al., Rev. Sci. Instrum. 84, 043705 (2013).

    ADS  Article  Google Scholar 

  6. [6]

    H. Habibullah, H. R. Pota and I. R. Petersen, Sens. Actuators A 292, 137 (2019).

    Article  Google Scholar 

  7. [7]

    A. J. Fleming and A. G. Willis, IEEE Trans. Control Syst. Technol. 17, 552 (2009).

    Article  Google Scholar 

  8. [8]

    A. P. Nievergelt et al., in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), (Munich, Germany, 2017), p. 731.

  9. [9]

    A. D. L. Humphris, M. J. Miles and J. K. Hobbs, Appl. Phys. Lett. 86, 034106 (2005).

    ADS  Article  Google Scholar 

  10. [10]

    L. M. Picco et al., Nanotechnology 18, 044030 (2006).

    ADS  Article  Google Scholar 

  11. [11]

    Y. R. Teo, Y. Yong and A. J. Fleming, Asian J. Control 20, 1352 (2018).

    Article  Google Scholar 

  12. [12]

    S. K. Das et al., IEEE Access 7, 115603 (2019).

    Article  Google Scholar 

  13. [13]

    N. Nikooienejad, M. Maroufi and S. O. R. Moheimani, Rev. Sci. Instrum. 90, 073702 (2019).

    ADS  Article  Google Scholar 

  14. [14]

    G. E. Fantner et al., Rev. Sci. Instrum. 76, 026118 (2005).

    ADS  Article  Google Scholar 

  15. [15]

    P. K. Hansma, G. Schitter, G. E. Fantner and C. Prater, Science 314, 601 (2006).

    Article  Google Scholar 

  16. [16]

    T. Ando et al., Jpn. J. Appl. Phys. 41, 4851 (2002).

    ADS  Article  Google Scholar 

Download references


This work is supported by the Basic Science Research Program through the National Reasearch Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2018R1A2B6008264).

Author information



Corresponding author

Correspondence to Yong Joong Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Otieno, L.O., Lee, Y.J. & Alunda, B.O. Implementation of a Sinusoidal Raster Scan for High-Speed Atomic Force Microscopy. J. Korean Phys. Soc. 77, 605–612 (2020).

Download citation


  • High-speed atomic force microscopy
  • Sinusoidal raster scan
  • FPGA