Electronic Structure and Optical Properties of a Mn-Doped InSe/WSe2 van der Walls Heterostructure: First Principles Calculations

Abstract

InSe-based van der Walls heterostructures (vdWHs) have attracted research interests recently because of their particular properties. In this work, the electronic structure and the optical properties of Mn-doped InSe/WSe2 vdWHs are investigated by using first-principles calculations. Mn doping in InSe/WSe2 vdWHs induces an increase in the system’s band gap. The optical properties of the vdWHs are also studied, and the absorption intensity of Mn-doped InSe/WSe2 is found to be enhanced in the near-infrared and ultraviolet regions. In addition, built-in electric fields are generated in InSe/WSe2 and Mn-doped InSe/WSe2, which can inhibit recombination of photogenerated electron-hole pairs. This work predicates the feasibility of enhancing the optical properties in InSe/WSe2 vdWHs by introducing dopants, which extends the applications of InSe materials in the field of optoelectronics.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    C. S. Jung et al., ACS Nano 9, 9585 (2015).

    Article  Google Scholar 

  2. [2]

    T. J. Marks and M. C. Hersam, Nature 520, 631 (2015).

    ADS  Article  Google Scholar 

  3. [3]

    F. Zhu et al., Nat. Mater. 14, 1020 (2015).

    ADS  Article  Google Scholar 

  4. [4]

    X. W. Zhao et al., Appl. Surf. Sci. 504, 144367 (2020).

    Article  Google Scholar 

  5. [5]

    K. S. Novoselov et al., Science 306, 666 (2004).

    ADS  Article  Google Scholar 

  6. [6]

    D. Barrera et al., J. Mater. Chem. C 5, 2859 (2017).

    Article  Google Scholar 

  7. [7]

    B. Qiu et al., Physica E 116, 113729 (2020).

    Article  Google Scholar 

  8. [8]

    Y. J. Yang, N. J. Huo and J. B. Li, J. Mater. Chem. C 5, 11614 (2017).

    Article  Google Scholar 

  9. [9]

    Q. H. Wang et al., Nat. Nanotechnol. 7, 699 (2012).

    ADS  Article  Google Scholar 

  10. [10]

    G. Mudd et al., Appl. Phys. Lett. 105, 221909 (2014).

    ADS  Article  Google Scholar 

  11. [11]

    M. Wu et al., Nanoscale 10, 11441 (2018).

    Article  Google Scholar 

  12. [12]

    P. H. Ho et al., ACS Nano 11, 7362 (2017).

    Article  Google Scholar 

  13. [13]

    W. Feng, W. Zheng, W. Cao and P. Hu, Adv. Mater. 26, 6587 (2014).

    Article  Google Scholar 

  14. [14]

    G. Mudd et al., Adv. Mater. 25, 5714 (2013).

    Article  Google Scholar 

  15. [15]

    G. H. Liu, K. X. Chen and J. T. Li, J. Am. Ceram. Soc. 101, 36 (2018).

    Article  Google Scholar 

  16. [16]

    S. Tamalampudi et al., Nano Lett. 14, 2800 (2014).

    ADS  Article  Google Scholar 

  17. [17]

    S. Lei et al., ACS Nano 8, 1263 (2014).

    Article  Google Scholar 

  18. [18]

    D. Pozo-Zamudio et al., arXiv.1506.05619 (2015).

  19. [19]

    D. A. Bandurin et al., Nat. Nanotechnol. 12, 223 (2017).

    ADS  Article  Google Scholar 

  20. [20]

    C. Sun et al., Appl. Phys. Express 9, 035203 (2016).

    ADS  Article  Google Scholar 

  21. [21]

    Y. M. Ding et al., Nanoscale 9, 14682 (2017).

    Article  Google Scholar 

  22. [22]

    W. Luo et al., Adv. Opt. Mater. 3, 1418 (2015).

    Article  Google Scholar 

  23. [23]

    G. Mudd et al., Adv. Mater. 27, 3760 (2015).

    Article  Google Scholar 

  24. [24]

    J. N. Coleman et al., Science 331, 568 (2011).

    ADS  Article  Google Scholar 

  25. [25]

    Y. Y. Yang, N. J. Huo and J. B. Li, J. Mater. Chem. C 5, 7051 (2017).

    Article  Google Scholar 

  26. [26]

    Y. Song, X. Wang and W. Mi, Phys. Chem. Chem. Phys. 19, 7721 (2017).

    Article  Google Scholar 

  27. [27]

    X. Li et al., J. Mater. Chem. C 6, 10010 (2018).

    Article  Google Scholar 

  28. [28]

    X. Chen, Z. Z. Lin and M. Ju, Phys. Status Solidi 12, 1800102 (2018).

    Article  Google Scholar 

  29. [29]

    X. Liu, Y. Hong and Z. Li, J. Alloys Compd. 777, 1145 (2019).

    Article  Google Scholar 

  30. [30]

    L. L. Yang, J. J. Shi and M. Zhang, Chin. Phys. Lett. 36, 097301 (2019).

    ADS  Article  Google Scholar 

  31. [31]

    B. Qiu et al., Phys. Lett. A 384, 126663 (2020).

    Article  Google Scholar 

  32. [32]

    Y. C. Cheng, Z. B. Guo and W. B. Mi, Phys. Rev. B 87, 100401 (2013).

    ADS  Article  Google Scholar 

  33. [33]

    J. Lee, J. Huang, B. G. Sumpter and Y. Mina, 2D Mater. 4, 021016 (2017).

    Article  Google Scholar 

  34. [34]

    P. Johari and V. B. Shenoy, ACS Nano 6, 5449 (2012).

    Article  Google Scholar 

  35. [35]

    Y. Song, W. Mi and X. Wang, Adv. Mater. Interfaces 3, 1600581 (2016).

    Article  Google Scholar 

  36. [36]

    N. Lu et al., Nanoscale 6, 2879 (2014).

    ADS  Article  Google Scholar 

  37. [37]

    Q. Liu et al., J. Phys. Chem. C 16, 21556 (2012).

    Article  Google Scholar 

  38. [38]

    Q. Tan, Q. Wang and Y. Liu, J. Phys. Condens. Matter 30, 305304 (2018).

    Article  Google Scholar 

  39. [39]

    P. Blöchl, Phys. Rev. B 50, 17953 (1994).

    ADS  Article  Google Scholar 

  40. [40]

    G. Kresse and J. Furthmller, Phys. Rev. B 54, 11169 (1996).

    ADS  Article  Google Scholar 

  41. [41]

    J. Perdew and K. Burke, Phys. Rev. Lett. 7, 3865 (1996).

    ADS  Article  Google Scholar 

  42. [42]

    S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  Google Scholar 

  43. [43]

    T. Kerber, M. Sierka and J. Sauer, J. Comput. Chem. 29, 2088 (2008).

    Article  Google Scholar 

  44. [44]

    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    H. L. Zhuang and R. G. Hennig, Chem. Mater. 25, 3232 (2013).

    Article  Google Scholar 

  46. [46]

    X. Li, C. Xia, X. Song, J. Du and W. Xiong, J. Mater. Sci. 52, 7207 (2017).

    ADS  Article  Google Scholar 

  47. [47]

    C. Sun et al., Appl. Phys. Express 9, 035203 (2016).

    ADS  Article  Google Scholar 

  48. [48]

    S. D. Guo and J. L. Wang, Semicond. Sci. Technol. 31, 095011 (2016).

    ADS  Article  Google Scholar 

  49. [49]

    H. L. Zhuang and R. G. Hennig, J. Phys. Chem. C 117, 20440 (2013).

    Article  Google Scholar 

  50. [50]

    G. B. Liu et al., Phys. Rev. B 88, 085433 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 11674197 and 11974215) and the Natural Science Foundation of Shandong Province (Grant No. ZR2018MA042). We are also grateful for the support from the Taishan Scholar Project of Shandong Province.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiaobo Yuan or Junfeng Ren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, R., Zhao, X., Hu, G. et al. Electronic Structure and Optical Properties of a Mn-Doped InSe/WSe2 van der Walls Heterostructure: First Principles Calculations. J. Korean Phys. Soc. 77, 587–591 (2020). https://doi.org/10.3938/jkps.77.587

Download citation

Keywords

  • van der Walls heterostructures
  • Mn-doped InSe/WSe2
  • Optical properties
  • Electronic structure