Effects of electromagnetic field and asymmetric Gaussian potential on low energy state energy of bound polaron in quantum well


In this article, effects of electromagnetic field and asymmetric Gaussian potential (AGP) on the bound polaron’s low energy state in quantum well are explored theoretically by the Lee-Low-Pines unitary transformation and Pekar type variational method. The variation of the ground state energy and the first excited state energy of the polaron with the Coulomb bound potential (CBP) strength at different electron-phonon coupling (EPC) constants, electric field (EF) strengths, heights and ranges of the AGP and magnetic field adjustment lengths are obtained. Our numerical results indicate that the polaron’s low energy state depends on the EPC constant, the EF strength, the AGP’s height and range and the CBP strength.

This is a preview of subscription content, log in to check access.


  1. [1]

    P. Dawson et al., J. Appl. Phys. 119, 181505 (2016).

    ADS  Article  Google Scholar 

  2. [2]

    L. Schade et al., Appl. Phys. Lett. 99, 051103 (2011).

    ADS  Article  Google Scholar 

  3. [3]

    M. Stern, V. Garmider, V. Umansky and I. Bar-Joseph, Phys. Rev. Lett. 100, 178 (2008).

    Google Scholar 

  4. [4]

    J. L. Xiao, Int. J. Theor. Phys. 55, 147 (2016).

    Article  Google Scholar 

  5. [5]

    C. L. Cao, L. Besombes and J. Fernández-Rossier, Phys. Rev. B 84, 3825 (2011).

    Google Scholar 

  6. [6]

    X. M. Dou et al., Phys. Rev. B 84, 033302 (2011).

    ADS  Article  Google Scholar 

  7. [7]

    K. Kamide, S. Iwamoto and Y. Arakawa, Phys. Rev. Lett. 113, 143604 (2014).

    ADS  Article  Google Scholar 

  8. [8]

    E. Tsitsishvili and H. Kalt, Phys. Rev. B 82, 195315 (2010).

    ADS  Article  Google Scholar 

  9. [9]

    X. Liu et al., Opt. Mater. 53, 218 (2016).

    ADS  Article  Google Scholar 

  10. [10]

    Z. H. Zhang, L. Zou, K. X. Guo and J. H. Yuan, Physica E 77, 90 (2016).

    ADS  Article  Google Scholar 

  11. [11]

    A. Guo and J. Du, Superlattices Microstruct. 64, 158 (2013).

    ADS  Article  Google Scholar 

  12. [12]

    J. Wu, K. Guo and G. Liu, Physica B 446, 59 (2014).

    ADS  Article  Google Scholar 

  13. [13]

    R. Khordad, S. Goudarzi and H. Bahramiyan, Indian J. Phys. 90, 659 (2016).

    ADS  Article  Google Scholar 

  14. [14]

    X. J. Miao, Y. Sun and J. L. Xiao, J. Korean Phys. Soc. 67, 1197 (2015).

    ADS  Article  Google Scholar 

  15. [15]

    Sarengaowa, J. L. Xiao and C. L. Zhao, Chin. J. Phys. 55, 1883 (2017).

    Article  Google Scholar 

  16. [16]

    X. J. Ma and J. L. Xiao, Chin. J. Phys. 56, 561 (2018).

    Article  Google Scholar 

  17. [17]

    Y. Chen, H. Song and J. Xiao, Superlattices Microstruct. 113, 82 (2018).

    ADS  Article  Google Scholar 

  18. [18]

    Y. J. Chen, W. F. Liu and F. L. Shao, Physica E 110, 15 (2019).

    ADS  Article  Google Scholar 

  19. [19]

    Y. J. Chen, H. T. Song and J. L. Xiao, Indian J. Phys. 92, 587 (2018).

    ADS  Article  Google Scholar 

  20. [20]

    Y. J. Chen, C. F. Cui and H. T. Song, Physica E 111, 130 (2019).

    ADS  Article  Google Scholar 

  21. [21]

    Y. J. Chen, H. T. Song and J. L. Xiao, Superlattices Microstruct. 118, 92 (2018).

    ADS  Article  Google Scholar 

  22. [22]

    Y. J. Chen and X. Wang, Int. J. Theor. Phys. 57, 3540 (2018).

    Article  Google Scholar 

  23. [23]

    Y. J. Chen and J. L. Xiao, J. Low Temp. Phys. 186, 241 (2017).

    ADS  Article  Google Scholar 

  24. [24]

    Y. J. Chen and P. Y. Zhang, J. Low Temp. Phys. 194, 262 (2019).

    ADS  Article  Google Scholar 

  25. [25]

    J. L. Xiao, Superlattices Microstruct. 135, 106279 (2019).

    Article  Google Scholar 

  26. [26]

    T. D. Lee, F. E. Low and D. Pines, Phys. Rev. 90, 297 (1953).

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    S. I. Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Akademie Verlag, Berlin, 1954).

    Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China under Grant No. 11975011.

Author information



Corresponding author

Correspondence to Ying-Jie Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, YH., Chen, YJ. & Shao, FL. Effects of electromagnetic field and asymmetric Gaussian potential on low energy state energy of bound polaron in quantum well. J. Korean Phys. Soc. 77, 582–586 (2020). https://doi.org/10.3938/jkps.77.582

Download citation


  • Quantum well
  • Asymmetric Gaussian potential
  • Bound polaron
  • Low energy state