Ozone-Generation Panel with an Atmospheric Dielectric Barrier Discharge

Abstract

For small-scale discharge panels of volume-dielectric barrier discharge (V-DBD) and surface-DBD (S-DBD) with an Al2O3-ceramic dielectric layer and a sinusoidal alternating current (AC)-voltage at a frequency of 55 kHz, the plasma and the ozone densities in the discharge area are estimated by analyzing the I-V (current and voltage) characteristics and ozone measuring the concentration in a liter-scale container. With a plasma current in the range of 10–20 mA, the plasma density is np ∼ (1018−1019)m−3 for the V-DBD and np ∼ (1017−1018)m−3 for the S-DBD, irrespective of environmental temperature. However, the ozone density generated on DBD is strongly affected by the electrode temperature and is reduced as the environmental temperature is increased. At an environmental temperature as low as 10 °C, the ozone density generated on the V-DBD is as low as n(O3) ∼ (1017−1018)m−3 with a high electrode temperature of more than 100 °C; on the other hand, the ozone density on the S-DBD is n(O3) ∼ (1019−1020)m−3 with a low electrode temperature of ∼30 °C, which is higher by an order of 102 than the plasma density on the S-DBD plasma panel.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    W. von Siemens, Ann. Phys. Chem. 102, 66 (1857).

    Article  Google Scholar 

  2. [2]

    B. Eliasson, M. Hirth and U. Kogelschatz, Phys. D: Appl. Phys. 20, 1421 (1987).

    ADS  Article  Google Scholar 

  3. [3]

    B. Eliasson and U. Kogelschatz, J. Chem. Phys. 83, 279 (1986).

    Google Scholar 

  4. [4]

    U. Kogelschatz, Advanced ozone generation (Plenum, New York and London, 1988), p. 87.

    Google Scholar 

  5. [5]

    A. Schutze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998).

    ADS  Article  Google Scholar 

  6. [6]

    B. Eliasson and U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 1063 (1991).

    ADS  Article  Google Scholar 

  7. [7]

    B. Eliasson and U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 309 (1991).

    ADS  Article  Google Scholar 

  8. [8]

    E. E. Kunhardt, IEEE Trans. Plasma Sci. 28, 189 (2000).

    ADS  Article  Google Scholar 

  9. [9]

    U. Kogelschatz, Contrib. Plasma Phys. 47, 80 (2007).

    ADS  Article  Google Scholar 

  10. [10]

    D. Cardis, C. Tapp, M. DeBrum and R. G. Rice, Ozone: Sci. Eng. 29, 85 (2007).

    Article  Google Scholar 

  11. [11]

    R. G. Rice, M. DeBrum, D. Cardis and C. Tapp, Ozone: Sci. Eng. 31, 339 (2009).

    Article  Google Scholar 

  12. [12]

    R. G. Rice et al., Ozone: Sci. Eng. 31, 348 (2009).

    Article  Google Scholar 

  13. [13]

    R. G. Rice et al., Ozone: Sci. Eng. 31, 357 (2009).

    Article  Google Scholar 

  14. [14]

    J. Kim et al., Appl. Sci. 7, 1308 (2017).

    Article  Google Scholar 

  15. [15]

    J. Kim et al., Appl. Sci. 8, 1294 (2018).

    Article  Google Scholar 

  16. [16]

    G. Cho and Y. Kim, Appl. Sci. Converg. Technol. 27, 2 (2018).

    Google Scholar 

  17. [17]

    J. Kim, Y. Kim, S. Kim and G. Cho, Plasma Sci. Technol. 21, 015506 (2018).

    ADS  Article  Google Scholar 

  18. [18]

    M. I. Lomaev, Atmos. Oceanic Opt. 14, 1005 (2001).

    Google Scholar 

  19. [19]

    S. Liu and M. Neiger, J. Phys. D: Appl. Phys. 34, 1632 (2001).

    ADS  Article  Google Scholar 

  20. [20]

    N. K. Bibinov, A. A. Fateev and K. Wiesemann, Plasma Sources Sci. Technol. 10, 579 (2001).

    ADS  Article  Google Scholar 

  21. [21]

    G. Cho et al., J. Phys. D: Appl. Phys. 40, 3945 (2007).

    ADS  Article  Google Scholar 

  22. [22]

    J. Kim et al., J. Phys D: Appl. Phys. 44, 075202 (2011).

    ADS  Article  Google Scholar 

  23. [23]

    G. Cho et al., J. Appl. Phys. 102, 113307 (2007).

    ADS  Article  Google Scholar 

  24. [24]

    J. M. Jeon et al., Jpn. J. Appl. Phys. 49, 026001 (2010).

    ADS  Article  Google Scholar 

  25. [25]

    T. S. Cho et al., Jpn. J. Appl. Phys. 41, 7518 (2002).

    ADS  Article  Google Scholar 

  26. [26]

    Y. P. Raizer, Gas Discharge Physics (Springer-Verlag, Berlin, 1991), Chap. 2, p. 18; Chap. 4, p. 56.

    Google Scholar 

  27. [27]

    E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics (Wiley, New York, 1970), Chap. 6, p 830.

    Google Scholar 

  28. [28]

    L. B. Loeb, Fundamental processes of Electrical Discharge in Gases (Wiley, New York, 1939), Chap. 4, p. 177.

    Google Scholar 

  29. [29]

    A. Von Engel, Ionized Gases, 2nd ed. (Oxford University Press, Oxford, 1965), Chap. 4, p. 122.

    Google Scholar 

  30. [30]

    B. E. Cherrington, Gaseous Electronics and Gas Lasers (Pergamon, Oxford, 1979), Chap. 8, p. 149.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Kwangwoon University under a Research Grant in 2020, by the National Research Foundation of Korea (NRF) funded by the Korea Government (MSIT; Grant No. NRF-2018R1A2B6008642), and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the ministry of Trade, Industry & Energy (MOTIE, Grant No. 20173030014460).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guangsup Cho.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, SJ., Kim, S., Son, BK. et al. Ozone-Generation Panel with an Atmospheric Dielectric Barrier Discharge. J. Korean Phys. Soc. 77, 572–581 (2020). https://doi.org/10.3938/jkps.77.572

Download citation

Keywords

  • Atmospheric pressure non-thermal plasma
  • Dielectric barrier discharge
  • Dielectrics
  • Plasma density
  • Ozone density