Neutron-Proton, Neutron-Neutron, Proton-Proton QRPA for the Gamow-Teller and the M1 Spin Transitions of NZ Nuclei in the s — d Shell

Abstract

We study the Gamow-Teller (GT) and the M1 spin transitions of the s — d shell nuclei 24Mg, 26Mg, 28Si, 32S, and 36Ar by using a quasiparticle random phase approximation (QRPA) scheme that comprises neutron-proton (np), neutron-neutron (nn) and proton-proton (pp) QRPA owing to the inclusion of the np pairing, as well as nn and pp pairing correlations. At present, we work in spherical symmetry under the assumption that the deformations of the nuclei considered in this work are small enough to neglect, as was customary in past applications. For the GT transition, as well as single and double beta decays, the neutron-proton QRPA (np QRPA) is usually employed. For the M1 spin transition, the pp and nn QRPA is needed due to its neutral current property. The np pairing correlations couple the np QRPA to the nn and pp QRPA. Therefore, the coupled np + nn + pp QRPA enables us to investigate simultaneously the GT and the M1 spin transitions. In particular, in this work, detailed analyses of particle-particle and particle-hole interactions at the QRPA stage are performed for the GT and the M1 spin transitions of the well-known s — d shell NZ nuclei, and the results are compared to available data. The roles of the np pairing correlations are also discussed for those transitions.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    S. Aoki et al., Prog. Theor. Exp. Phys. 2012, 01A105 (2012).

    Google Scholar 

  2. [2]

    P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag Berlin Heidelberg, 1980).

    Google Scholar 

  3. [3]

    A. L. Kuzemsky, Int. J. Mod. Phys. B 29, 1530010 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    M. Bender, P-H. Heenen and P-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    ADS  Article  Google Scholar 

  5. [5]

    B. R. Barret, P. Navratil and J. P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013).

    ADS  Article  Google Scholar 

  6. [6]

    R. Roth et al., Prog. Theor. Phys. Suppl. 196, 131 (2012).

    ADS  Article  Google Scholar 

  7. [7]

    R. Subedi et al., Science 320, 1476 (2008).

    ADS  Article  Google Scholar 

  8. [8]

    O. Hen et al., Science 346, 616 (2014).

    ADS  Article  Google Scholar 

  9. [9]

    S. Terashima et al., Phys. Rev. Lett. 121, 242501 (2018).

    ADS  Article  Google Scholar 

  10. [10]

    G. A. Lalazissis, P. Ring and D. Vretenar, Extended Density Functionals in Nuclear Structure Physics (Springer, 2010).

  11. [11]

    H. Gil et al., Phys. Rev. C 100, 014312 (2019).

    ADS  Article  Google Scholar 

  12. [12]

    H. Gil, P. Papakonstantinou, C. H. Hyun and Y. Oh, Phys. Rev. C 99, 064319 (2019).

    ADS  Article  Google Scholar 

  13. [13]

    M. Dutra et al., Phys. Rev. C 85, 035201 (2012).

    ADS  Article  Google Scholar 

  14. [14]

    R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).

    ADS  Article  Google Scholar 

  15. [15]

    S. Choi et al., Prog. Theor. Exp. Phys., in press (2019).

  16. [16]

    J. Suhonen, From Nucleons to Nucleus (Springer-Verlag Berlin Heidelberg, 2007).

    Google Scholar 

  17. [17]

    G. Colo, H. Sagawa and P. F. Bortignon, Phys. Rev. C 82, 064307 (2010).

    ADS  Article  Google Scholar 

  18. [18]

    M. K. Cheoun et al., Nucl. Phys. A 561, 74 (1993).

    ADS  Article  Google Scholar 

  19. [19]

    M. K. Cheoun et al., Nucl. Phys. A 564, 329 (1993).

    ADS  Article  Google Scholar 

  20. [20]

    M. K. Cheoun et al., Nucl. Phys. A 587, 301 (1995).

    ADS  Article  Google Scholar 

  21. [21]

    R. Nojarov, J. Phys. G 10, 539 (1984).

    ADS  Article  Google Scholar 

  22. [22]

    A. Faessler et al., Phys. Rev. D 87, 053002 (2013).

    ADS  Article  Google Scholar 

  23. [23]

    A. Faessler et al., Phys. Rev. D 79, 053001 (2009).

    ADS  Article  Google Scholar 

  24. [24]

    M.-K. Cheoun, E. Ha, K. S. Kim and T. Kajino, J. Phys. G 37, 055101 (2010).

    ADS  Article  Google Scholar 

  25. [25]

    L. Pacearescu, V. Rodin, F. Simkovic and A. Faessler, Phys. Rev. C 68 064310 (2003)

    ADS  Article  Google Scholar 

  26. [25a]

    L. Pacearescu, V. Rodin, F. Simkovic and A. Faessler, Phys. Rev. C 75, 059902(E) (2007).

    ADS  Google Scholar 

  27. [26]

    K. Hagino, N. V. Giai and H. Sagawa, Nucl. Phys. A 731, 264 (2004).

    ADS  Article  Google Scholar 

  28. [27]

    E. Ha and M-K. Cheoun, Nucl. Phys. A 934, 73 (2015).

    ADS  Article  Google Scholar 

  29. [28]

    G. Teneva et al., Nucl. Phys. A 586, 249 (1995).

    ADS  Article  Google Scholar 

  30. [29]

    G. Teneva et al., Prog. Part. Nucl. Phys. 32, 329 (1994).

    ADS  Article  Google Scholar 

  31. [30]

    L. Y. Jia, Nucl. Phys. A 941, 293 (2015).

    ADS  Article  Google Scholar 

  32. [31]

    J. Dukelsky, S. Pittel and C. Esebbag, Phys. Rev. C 93, 034313 (2016).

    ADS  Article  Google Scholar 

  33. [32]

    E. Ha, M-K. Cheoun and H. Sagawa, Phys. Rev. C 99 064304 (2019).

    ADS  Article  Google Scholar 

  34. [33]

    E. Ha, M-K. Cheoun and H. Sagawa, Phys. Rev. C 97, 064322 (2018).

    ADS  Article  Google Scholar 

  35. [34]

    E. Ha, M-K. Cheoun and H. Sagawa, Phys. Rev. C 97, 024320 (2018).

    ADS  Article  Google Scholar 

  36. [35]

    K. Holinde, Phys. Rep. 68, 121, (1981).

    ADS  Article  Google Scholar 

  37. [36]

    H. Tong et al., Phys. Rev. C 98, 054302 (2018).

    ADS  Article  Google Scholar 

  38. [37]

    S. Choi et al., Prog. Theor. Exp. Phys. 2020, 013D04 (2020).

    Article  Google Scholar 

  39. [38]

    R. G. T. Zegers et al., Phys. Rev. C 78, 014314 (2008).

    ADS  Article  Google Scholar 

  40. [39]

    E. Ha and M-K. Cheoun, Phys. Rev. C 94, 054320 (2016).

    ADS  Article  Google Scholar 

  41. [40]

    E. Ha and M-K. Cheoun, Eur. Phys. J. A 53, 26 (2017).

    ADS  Article  Google Scholar 

  42. [41]

    M.-K. Cheoun, E. Ha and T. Kajino, Eur. Phys. J. A 48, 137 (2012).

    ADS  Article  Google Scholar 

  43. [42]

    E. Ha, M-K. Cheoun and K. S. Kim, J. Korean Phys. Soc. 67, 1142 (2015).

    ADS  Article  Google Scholar 

  44. [43]

    R. A. Eramzhyan, V. A. Kuz’min and T. V. Tetereva, Nucl. Phys. A 643, 428 (1998).

    ADS  Article  Google Scholar 

  45. [44]

    O. Civitarese, H. Muther, L. D. Skouras and A. Faessler, J. Phys. G 17, 1363 (1991).

    ADS  Article  Google Scholar 

  46. [45]

    G. Teneva et al., Nucl. Phys. A 586, 249 (1995).

    ADS  Article  Google Scholar 

  47. [46]

    J. Schwieger, F. Simkovic and A. Faessler, Nucl. Phys. A 600, 179 (1996).

    ADS  Article  Google Scholar 

  48. [47]

    M. E. Howard et al., Phys. Rev. C 78, 047302 (2008).

    ADS  Article  Google Scholar 

  49. [48]

    K. Nakayama, A. P. Galeao and F. Krmpotic, Phys. Lett. B 114, 217 (1982).

    ADS  Article  Google Scholar 

  50. [49]

    R. G. T. Zegers et al., Phys. Rev. C 74, 024309 (2008).

    ADS  Article  Google Scholar 

  51. [50]

    H. Matsubara et al., Phys. Rev. Lett. 115, 102501 (2015).

    ADS  Article  Google Scholar 

  52. [51]

    T. C. Li et al., Phys. Rev. C 73, 054306 (2006).

    ADS  Article  Google Scholar 

  53. [52]

    H. Sagawa and T. Suzuki, Phys. Rev. C 97, 054333 (2018).

    ADS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (Grant Nos. NRF-2018R1D1A1B 05048026, NRF-2020R1A2C3006177, NRF-2013M7A1A 1075764, and NRF-2018R1D1A1B07045915).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Myung-Ki Cheoun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Ha, E., Cheoun, MK. et al. Neutron-Proton, Neutron-Neutron, Proton-Proton QRPA for the Gamow-Teller and the M1 Spin Transitions of NZ Nuclei in the s — d Shell. J. Korean Phys. Soc. 77, 545–556 (2020). https://doi.org/10.3938/jkps.77.545

Download citation

Keywords

  • Gamow Teller Transition
  • M1 spin transition
  • Quasi Particle Random Phase Approximation
  • Pairing correlations