Skip to main content
Log in

Effects of the Intercalant and the Temperature in Hybrid-MoS2 Nanodots Fabrication and Their Photoluminescence Enhancement

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, we have proposed a simple method to produce temperature-dependent variablesize of MoS2 nanodots (NDTs) by using MoS2 powder as a pre-cursor and KNa-tartrate as the intercalant. Due to defects in MoS2, the optical properties are strongly modified and show blue luminescence under UV irradiation of MoS2 NDTs. The temperature variable is used to gradually introduce defects in 2D materials to obtain nanodots with different particle sizes. When the synthesis temperature is increased from 120 °C to 200 °C, the particle size is reduced from ~ 120 nm to ~ 2.5 nm. Next, an enhancement of photoluminescent magnitude and a red shift were observed in photoluminescence spectra from MoS2 NDTs solutions. These results offer a route toward tailoring the optical properties of 2D nanomaterials by controlling the size/temperature/synthesis method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Mattheiss, Phys. Rev. B 8, 379 (1973).

    Article  Google Scholar 

  2. K. F. Mak et al., Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  3. G. Eda et al., Nano Lett. 11, 5111 (2011).

    Article  ADS  Google Scholar 

  4. H. D. Ha et al., Small 10, 3858 (2014).

    Article  ADS  Google Scholar 

  5. J. Li and J. J. Zhu, Analyst 138, 2506 (2013).

    Article  ADS  Google Scholar 

  6. G. U. Siddiqui et al., J. Lumin. 169, 342 (2016).

    Article  Google Scholar 

  7. Y. Zhou et al., Opt. Mater. Express 5, 1606 (2015).

    Article  ADS  Google Scholar 

  8. L. Chen et al., Nanoscale 7, 14982 (2015).

    Article  ADS  Google Scholar 

  9. J. Benson et al., ACS Appl. Mater. Interfaces 7, 14113 (2015).

    Article  Google Scholar 

  10. Y. Shi et al., Nano Lett. 12, 2784 (2012).

    Article  ADS  Google Scholar 

  11. G. S. Bang et al., ACS Appl. Mater. Interfaces 6, 7084 (2014).

    Article  Google Scholar 

  12. N. S. Arul and V. D. Nithya, RSC Adv. 6, 65670 (2016).

    Article  Google Scholar 

  13. G. C. Loh, R. Pandey, Y. K. Yap and S. P. Karna, J. Phys. Chem. C 119, 1565 (2015).

    Article  Google Scholar 

  14. M. Javaid, D. W. Drumm, S. P. Russo and A. D. Greentree, Sci. Rep. 7, 9775 (2017).

    Article  ADS  Google Scholar 

  15. B. Li et al., Sci. Rep. 7, 1182 (2017).

    Article  ADS  Google Scholar 

  16. B. L. Li et al., Nanoscale 6, 9831 (2014).

    Article  ADS  Google Scholar 

  17. D. Gopalakrishnan et al., Chem. Commun. 51, 6293 (2015).

    Article  Google Scholar 

  18. X. Ren et al., J. Mater. Chem. A 3, 10693 (2015).

    Article  Google Scholar 

  19. D. Gopalakrishnan, D. Damien and M. M. Shaijumon, ACS Nano 8, 5297 (2014).

    Article  Google Scholar 

  20. Y. Wang and Y. Ni, Anal. Chem. 86, 7463 (2014).

    Article  Google Scholar 

  21. W. Dai et al., Small 11, 4158 (2015).

    Article  Google Scholar 

  22. Y. Xu et al., Chem. Soc. Rev. 47, 586 (2018).

    Article  Google Scholar 

  23. L. Ji, J. Wang, S. Zuo and Z. Chen, J. Phys. Chem. C 121, 4917 (2017).

    Article  Google Scholar 

  24. C. H. Lin et al., Nanoscale Res. Lett. 10, 446 (2015).

    Article  ADS  Google Scholar 

  25. L. Lin et al., ACS Nano 7, 8214 (2013).

    Article  Google Scholar 

  26. J. Y. Wu et al., RSC Adv. 5, 95178 (2015).

    Article  Google Scholar 

  27. Y. Wang et al., Kexue Tongbao/Chin. Sci. Bull. 64, 411 (2019).

    Article  Google Scholar 

  28. L. Bao et al., Adv. Mater. 23, 5801 (2011).

    Article  Google Scholar 

  29. V. Štengl and J. Henych, Nanoscale 5, 3387 (2013).

    Article  ADS  Google Scholar 

  30. H. Lin et al., New J. Chem. 39, 8942 (2015).

    Google Scholar 

  31. S. H. Song et al., Adv. Opt. Mater. 2, 1016 (2014).

    Article  Google Scholar 

  32. Q. Xue et al., Adv. Mater. 29, 1604847 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Research Base Construction Fund Support Program” funded by Jeonbuk National University in 2019 and by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2018R1A2B6006740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Don Bu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, A., Kim, EY., Song, D.S. et al. Effects of the Intercalant and the Temperature in Hybrid-MoS2 Nanodots Fabrication and Their Photoluminescence Enhancement. J. Korean Phys. Soc. 76, 980–984 (2020). https://doi.org/10.3938/jkps.76.980

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.980

Keywords

Navigation