Direct Evidence of Simultaneous Reversal of Ferrimagnetically Coupled Sm 4f and Mn 3d Angular Momenta in SmMnO3

Abstract

Using the soft X-ray magnetic circular dichroism (XMCD) technique, we investigated the magnetic states of the Sm 4f and the Mn 3d moments in a Néel N-type ferrimagnet, SmMnO3, which exhibits a striking magnetocapacitive effect around the compensation temperature (Tcomp ≈ 9.4 K). The XMCD results show that the Sm 4f and the Mn 3d moments were always aligned antiparallel to each other and that, upon sweeping a magnetic field, the angular momenta of Sm 4f and Mn 3d were simultaneously reversed at the field where the magnetocapacitive effect was observed. This indicates that the magnetocapacitive effect of SmMnO3 is induced by a simultaneous reversal of Sm 4f and Mn 3d angular momenta, i.e., magnetization reversal. We discuss a plausible origin of the magnetocapacitive effect in terms of the p-d hybridization mechanism.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    T. Kimura et al., Nature426, 55 (2003).

    ADS  Article  Google Scholar 

  2. [2]

    M. Kenzelmann et al., Phys. Rev. Lett.95, 087206 (2005).

    ADS  Article  Google Scholar 

  3. [3]

    V. Y. Pomjakushin et al., New J. Phys.11, 043019 (2009).

    ADS  Article  Google Scholar 

  4. [4]

    S-W. Cheong and M. Mostovoy, Nat. Mater.6, 13 (2007).

    ADS  Article  Google Scholar 

  5. [5]

    D. Khomskii, Physics2, 20 (2009).

    Article  Google Scholar 

  6. [6]

    S. Dong and J-M. Liu, Mod. Phys. Lett. B26, 1230004 (2012).

    ADS  Article  Google Scholar 

  7. [7]

    E. Bousquet and A. Cano, J. Phys.: Condens. Matter28, 123001 (2016).

    Google Scholar 

  8. [8]

    D. Okuyama et al., Phys. Rev. B84, 054440 (2011).

    ADS  Article  Google Scholar 

  9. [9]

    H. Katsura, N. Nagaosa and A. V. Balatsky, Phys. Rev. Lett.95, 057205 (2005).

    ADS  Article  Google Scholar 

  10. [10]

    I. A. Sergienko and E. Dagotto, Phys. Rev. B73, 094434 (2006).

    ADS  Article  Google Scholar 

  11. [11]

    M. Mostovoy, Phys. Rev. Lett.96, 067601 (2006).

    ADS  Article  Google Scholar 

  12. [12]

    I. A. Sergienko, C. Sen and E. Dagotto, Phys. Rev. Lett.97, 227204 (2006).

    ADS  Article  Google Scholar 

  13. [13]

    S. Picozzi et al., Phys. Rev. Lett.99, 227201 (2007).

    ADS  Article  Google Scholar 

  14. [14]

    T. Kimura et al., Phys. Rev. B68, 060403(R) (2003).

  15. [15]

    V. Skumryev et al., Eur. Phys. J. B11, 401 (1999).

    ADS  Google Scholar 

  16. [16]

    J-S. Jung et al., Phys. Rev. B82, 212403 (2010).

    ADS  Article  Google Scholar 

  17. [17]

    V. Y. Ivanov, A. A. Mukhin, A. S. Prokhorov and A. M. Balbashov, Phys. Status Solidi B236, 445 (2003).

    ADS  Article  Google Scholar 

  18. [18]

    L. Néel, Ann. Phys. (Paris)3, 137 (1948).

    ADS  Google Scholar 

  19. [19]

    N. Menyuk, K. Dwight and D. G. Wickhan, Phys. Rev. Lett.4, 119 (1960).

    ADS  Article  Google Scholar 

  20. [20]

    B. T. Thole, G. van der Laan and J. C. Fuggle, Phys. Rev. B32, 5107 (1985).

    ADS  Article  Google Scholar 

  21. [21]

    S. S. Dhesi et al., Phys. Rev. B82, 180402(R) (2010).

    ADS  Article  Google Scholar 

  22. [22]

    T. Koide et al., Phys. Rev. Lett.87, 246404 (2001).

    ADS  Article  Google Scholar 

  23. [23]

    B. T. Thole, P. Carra, F. Sette and G. van der Laan, Phys. Rev. Lett.68, 1943 (1992).

    ADS  Article  Google Scholar 

  24. [24]

    M. Altarelli, Phys. Rev. B47, 597 (1993).

    ADS  Article  Google Scholar 

  25. [25]

    P. Carra, B. T. Thole, M. Altarelli and X. Wang, Phys. Rev. Lett.70, 694 (1993).

    ADS  Article  Google Scholar 

  26. [26]

    P. Carra et al., Physica B192, 182 (1993).

    ADS  Article  Google Scholar 

  27. [27]

    Y. Teramura, A. Tanaka and T. Jo, J. Phys. Soc. Jpn.65, 1053 (1996).

    ADS  Article  Google Scholar 

  28. [28]

    S. Qiao et al., Phys. Rev. B70, 134418 (2004).

    ADS  Article  Google Scholar 

  29. [29]

    T. Jo, Electron Spectrosc. Relat. Phenom.86, 73 (1997).

    Article  Google Scholar 

  30. [30]

    J-G. Cheng et al., Phys. Rev. B84, 104415 (2011).

    ADS  Article  Google Scholar 

  31. [31]

    A. Iyama et al., J. Phys. Soc. Jpn.81, 013703 (2012).

    ADS  Article  Google Scholar 

  32. [32]

    J-S. Jung et al., Phys. Rev. B85, 174414 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Y. Shiratsuchi for supporting the experiments. The XMCD measurements at BL25SU (Proposal No. 2011A1129) in SPring-8 were performed with the approval of Japan Synchrotron Radiation Research Institute (JASRI). This work was partly supported by Grants-in-Aid for Scientific Research (JSPS KAKENHI Grant numbers JP17H01143 and JP19H05823).

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Kimura.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jung, JS., Nakamura, T., Wakabayashi, Y. et al. Direct Evidence of Simultaneous Reversal of Ferrimagnetically Coupled Sm 4f and Mn 3d Angular Momenta in SmMnO3. J. Korean Phys. Soc. 76, 904–910 (2020). https://doi.org/10.3938/jkps.76.904

Download citation

PACS numbers

  • 61.05.cj
  • 75.25.−j
  • 75.60.Jk

Keywords

  • X-ray magnetic circular dichroism
  • Rare-earth manganite
  • Magnetization reversal