Skip to main content
Log in

Dependence of the Optimization of the Front Grid Design in Passivated Emitter and Rear Contact c-Si Solar Cells on the Finger Width and the Aspect Ratio

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this research, modeling was performed to optimize the grid of the front surface of a solar cell with the passivated emitter and rear contact (PERC) structure by considering the recombination characteristics. The front surface recombination velocity can be reduced in two main ways. The first method is to reduce the emitter Auger recombination by lowering the surface doping concentration during emitter formation, and the second method is to reduce the recombination that occurs at the surface when the electrode and the silicon are in contact, which is called metal-induced recombination and is represented by J0.metal. Because J0.metal increases in proportion to the area of the front electrode, minimizing the finger width and number by optimizing the electrode design is important. Therefore, the front electrode grid should be designed considering the emitter characteristics, J0.metal, according to the number of fingers and the resistance. In this research, the front grid of the solar cell was optimized via modeling using equations to calculate the number of fingers and the resistance. According to the finger width, the number of busbars, the sheet resistance, the aspect ratio, and the number of fingers corresponding to the maximum efficiency were identified. As a result, this modeling enabled us to optimize the front grid to the desired conditions, and we found that an increase in the number of busbars plays an important role in improving the efficiency of solar cells. In addition, the efficiency change with increasing number of busbars can be seen to be affected by the width of the finger and the resolution of the printed finger rather than the aspect ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.W. Blakers et al., Appl.Phys. Lett. 55, 1363 (1989).

    Article  ADS  Google Scholar 

  2. M.A. Green et al., IEEE Trans. Electron Devices 37, 331 (1990).

    Article  ADS  Google Scholar 

  3. S. Zhang et al., Energies 12, 1168 (2019).

    Article  Google Scholar 

  4. F. Ye et al., Sol. Energy Mater. Sol. Cells 190, 30 (2019).

    Article  Google Scholar 

  5. S. Zhang et al., Energies 12, 416 (2019).

    Article  Google Scholar 

  6. W. Chena, R. Liu, Q. Zeng and L. Zhou, Sol. Energy 184, 508 (2019).

    Article  ADS  Google Scholar 

  7. S. Joonwichien et al., Sol. Energy Mater. Sol. Cells 186, 84 (2018).

    Article  Google Scholar 

  8. H. Huang et al., Sol. Energy Mater. Sol. Cells 161, 14 (2017).

    Article  Google Scholar 

  9. K. Srinivasan and A. Kottantharayil, Sol. Energy Mater. Sol. Cells 197, 93 (2019).

    Article  Google Scholar 

  10. S. Gatz, J. Müller, T. Dullweber and R. Brendel, Energy Procedia 27, 95 (2012).

    Article  Google Scholar 

  11. J. M. Yacob Ali et al., Sol. Energy Mater. Sol. Cells 192, 117 (2019).

    Article  Google Scholar 

  12. Y. F. Zhuang et al., Sol. Energy Mater. Sol. Cells 193, 379 (2019).

    Article  Google Scholar 

  13. B. Vermang et al., Prog. Photovolt.: Res. Appl. 20, 269 (2012).

    Article  Google Scholar 

  14. J. H. Lee et al., Curr. Appl. Phys. 19, 683 (2019).

    Article  ADS  Google Scholar 

  15. C. H. Hsu et al., Surf. Coat. Technol. 358, 968 (2019).

    Article  Google Scholar 

  16. J. H. Lai et al., IEEE J. Photovolt. 1, 16 (2011).

    Article  Google Scholar 

  17. M. Xie, X. Yu, X. Qiu and D. Yang, Sol. Energy Mater. Sol. Cells 191, 350 (2019).

    Article  Google Scholar 

  18. J. M. Hwang, J. Appl. Phys. 125, 173301 (2019).

    Article  ADS  Google Scholar 

  19. Z. Suxiang et al., Appl. Surf. Sci. 290, 66 (2014).

    Article  Google Scholar 

  20. Z. Xin et al., Sol. Energy Mater. Sol. Cells 191, 164 (2019).

    Article  Google Scholar 

  21. H. Hannebauer et al., Phys. Status Solidi RRL 8, 675 (2014).

    Article  Google Scholar 

  22. T. Dullweber et al., in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (Amsterdam, The Netherlands, September 22–26, 2014).

  23. A. Metz et al., Sol. Energy Mater. Sol. Cells 120, 417 (2014).

    Article  Google Scholar 

  24. A. Goetzberger, J. Knobloch and B. Voss, Crystalline Silicon Solar Cells (Wiley, Chichester, 1998).

    Google Scholar 

  25. A. Cuevas and M. Balbuena, Conference Record of the 20thIEEE Photovoltaic Specialists Conference (Las Vegas, NV, USA, September 26–30}, 1988).

  26. E. Demesmaeker et al., Conference Record of the 22thIEEE Photovoltaic Specialists Conference (Las Vegas, NV, USA, October 7–11, 1991).

  27. A. Cuevas and D. A. Russell, Prog. Photovolt.: Res. Appl. 8, 603 (2000).

    Article  Google Scholar 

  28. A. Mette, PhD Thesis, Freiburg im Breisgau, 2007.

  29. M. A. Green, Solar Cells: Operating Principles, Technology and System Application (University of NSW, Kensington, 1992).

    Google Scholar 

  30. Y. Yang et al., Prog. Photovolt.: Res. Appl. 20, 490 (2012).

    Article  Google Scholar 

  31. L. Castañer and S. Silvestre, Modelling photovoltaic systems using PSpice (John Wiley & Sons, Hoboken, NJ, 2002).

    Book  Google Scholar 

  32. B. Galiana, C. Algora and I. Rey-Stolle, Sol. Energy Mater. Sol. Cells 90, 16 (2006).

    Article  Google Scholar 

  33. A. Zekry and A. Al-Mazroo, IEEE Trans. Electron Devices 43, 5 (1996).

    Article  Google Scholar 

  34. B. Fischer, PhD Thesis, Universität Konstanz, 2003.

  35. M. M. Hilali, PhD Thesis, Georgia Institute of Technology, 2005.

  36. G. Schubert, PhD Thesis, Universität Konstanz, 2006.

  37. S. Meier et al., 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) (Waikoloa Village, HI, USA, June 10–15, 2018).

  38. D. Inns and D. Poplasvskyy, 42nd IEEE PVSC (New Orleans, June 14–19, 2015).

  39. T. Fellmeth et al., Energy Procedia 8, 115 (2011).

    Article  Google Scholar 

  40. A. Edler et al., Prog. Photovolt.: Res. Appl. 23, 620 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted under the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) through a grant funded by the Ministry of Knowledge Economy, Korea (Project No. 20183030019460), and by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (2017M1A2A2086911).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sungeun Park or Hee-eun Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, M.S., Min, K.H., Choi, S. et al. Dependence of the Optimization of the Front Grid Design in Passivated Emitter and Rear Contact c-Si Solar Cells on the Finger Width and the Aspect Ratio. J. Korean Phys. Soc. 76, 774–780 (2020). https://doi.org/10.3938/jkps.76.774

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.774

Keywords

Navigation