Skip to main content
Log in

A Textile-Based MWCNT-Coated Stretch Sensor for Body Size Measurements

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, a textile-based stretch sensor with a polymer/conductor/polymer structure was fabricated using a paste of multiwalled carbon nanotubes (MWCNTs) as the conductive material. A simple and practical method that integrates with the manufacturing methods employed in the garment industry was designed. The stretch sensor showed varying performance depending on the anchoring points, that is, the stretched part. When only the sensor was fixed, the linearity of the resistance and the sensitivity were good, though the durability was low. On the contrary, when the elastic band was fixed, the linearity of the resistance and sensitivity were low, and the durability was good. To verify whether the manufactured stretch sensor can be applied to body size measurement garments, we fabricated and evaluated a belt by measuring the waist and the hip sizes of 10 people. The strain spanned a wide range from 3% to 85%, and the resistance maintained its linearity. The results of this study indicate that the elastic difference between the stretch sensor and the surrounding fabric can lead to problems; hence, we suggest that materials and design be selected accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Cherenack and L. V. Pieterson, Appl. Phys. Rev. 112, 112 (2012).

    Article  Google Scholar 

  2. A. K. Yetisen et al., ACS Nano 10, 10 (2016).

    Article  Google Scholar 

  3. C. Goncalves, A. F. D. Silva, J. Gomes and R. Simoes, Inventions 3, 3 (2018).

    Article  Google Scholar 

  4. A. I. S. Neves et al., Sci. Rep. 7, 7 (2017).

    Article  Google Scholar 

  5. M. Z. Seyedin, J. M. Razal, P. C. Innis and G. G. Wallace, Adv. Funct. Mater. 24, 24 (2014).

    Google Scholar 

  6. M. S. Khalilabad and M. E. Yazdanshenas, Carbohydr. Polym. 96, 96 (2013).

    Google Scholar 

  7. J. Molina, RSC Adv. 6, 6 (2016).

    Article  Google Scholar 

  8. H. M. Lee, S. Y. Choi, A. Jung and S. H. Ko, Angew. Chem. Int. Ed. 52, 52 (2013).

    Article  Google Scholar 

  9. A. I. S. Neves et al., Sci. Rep. 5, 5 (2015).

    Article  Google Scholar 

  10. S. Poomsalood, K. Muthumayandi and K. Hambly, Biomed. Hum. Kinet. 11, 11 (2019).

    Google Scholar 

  11. B. Oldfrey, R. Jackson, P. Smitham and M. Miodownik, Front. Robot. AI 6, 6 (2019).

    Article  Google Scholar 

  12. S. Lee et al., Adv. Funct. Mater. 25, 25 (2015).

    Google Scholar 

  13. T. Lee et al., Adv. Funct. Mater. 26, 26 (2016).

    Google Scholar 

  14. S. J. Kim et al., ACS Appl. Mater. Interfaces 10, 10 (2018).

    ADS  Google Scholar 

  15. Y. Z. Zhang et al., Sci. Adv. 4, eaat0098 (2018).

    Article  ADS  Google Scholar 

  16. L. Hu et al., Nano Lett. 10, 10 (2010).

    Google Scholar 

  17. J. Ko, S. Jee, J. H. Lee and S. H. Kim, Sens. Actuator A 274, 274 (2018).

    Article  Google Scholar 

  18. J. Lee et al., ACS Nano 12, 12 (2018).

    ADS  Google Scholar 

  19. J. J. Park et al., ACS Appl. Mater. Interfaces 7, 7 (2015).

    Google Scholar 

  20. H. Devaraj et al., Robotics 7, 7 (2018).

    Article  Google Scholar 

  21. Y. Wang et al., Adv. Funct. Mater. 24, 24 (2014).

    Google Scholar 

  22. A. Tairych and I. A. Anderson, Soft Robot. 6, 6 (2019).

    Google Scholar 

  23. B. Huang et al., Sensors 17, 17 (2017).

    Google Scholar 

  24. N. N. Jason, M. D. Ho and W. Cheng, J. Mater. Chem. C 5, 5 (2017).

    Article  Google Scholar 

  25. H. Souri and D. Bhattacharyya, ACS Appl. Mater. Interfaces 10, 10 (2018).

    Article  Google Scholar 

  26. C. Wang et al., ACS Appl. Mater. Interfaces 9, 9 (2017).

    Google Scholar 

  27. X. Li et al., Sci. Rep. 2, 870 (2012).

    Article  Google Scholar 

  28. I. Hirata, H. Nakamoto, H. Ootaka and M. Tada, Procedia Manuf. 3, 3 (2015).

    Google Scholar 

Download references

Acknowledgments

This work was supported by Incheon National University Research Grant in 2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Soo Yoon or Sun Hee Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulugeta, M., Ko, J., Yoon, Y.S. et al. A Textile-Based MWCNT-Coated Stretch Sensor for Body Size Measurements. J. Korean Phys. Soc. 76, 688–694 (2020). https://doi.org/10.3938/jkps.76.688

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.688

Keywords

Navigation