Skip to main content
Log in

√3 × 2 and √3 × √7 Charge Density Wave Driven by Lattice Distortion in Monolayer VSe2

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A charge density wave (CDW), an ordered modulation of electron distribution and lattice distortion, is one of the intriguing phenomena observed in transition metal dichalcogenides. Recent STM studies reported a new CDW phase with √3 × 2 and √3 × √7 periodicities in monolayer (ML) VSe2 grown on graphene, which is totally different from the 4 x 4 x 3 CDW periodicity in bulk. Although the emergence of new CDW phase is of great research interest, the origin of the new modulation in ML VSe2 has not been clearly investigated. In this report, we conduct a systematic study to understand the nature of the √3 × 2 and √3 × √7 CDW in ML VSe2 using scanning tunneling microscopy (STM). Bias dependent topography and differential conductance (dI/dV) mapping indicate that the √3 × 2 and √3 × √7 modulations are mostly driven by strong lattice distortions of the Se atoms rather than by charge orderings. In addition, STM topography reveals that the v3 × 2 modulation corresponds to a gap feature, and the v3 × v7 modulation corresponds to an isolated Se atom in the distorted lattice structures. Our work provides prerequisite information to understand the emergence of √3, × 2 and √3, × √7 CDW in ML VSe2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C-S. Lian and C. Si, W. Duan, Nano Lett. 18, 2924 (2018).

    Article  ADS  Google Scholar 

  2. K. Takita and K. Masuda, J. Low Temp. Phys. 58, 127 (1985).

    Article  ADS  Google Scholar 

  3. Y. Liu et al, Phys. Rev. B 94, 45131 (2016).

    Article  ADS  Google Scholar 

  4. C-S. Lian et al, J. Phys. Chem. Lett. 10, 4076 (2019).

    Article  Google Scholar 

  5. X. Xi et al, Nat. Nanotechnol. 10, 765 (2015).

    Article  ADS  Google Scholar 

  6. P. Chen et al, Phys. Rev. Lett. 121, 196402 (2018).

    Article  ADS  Google Scholar 

  7. M. D. Johannes and I. I. Mazin, Phys. Rev. B 77, 165135 (2008).

    Article  ADS  Google Scholar 

  8. K. Rossnagel, J. Phys. Condens. Matter 23, 213001 (2011).

    Article  ADS  Google Scholar 

  9. X. Zhu et al, Proc. Natl. Acad. Sci. U.S.A. 112, 2367 (2015).

    Article  ADS  Google Scholar 

  10. D. W. Shen et al, Phys. Rev. Lett. 99, 216404 (2007).

    Article  ADS  Google Scholar 

  11. G. Li et al, Nat. Phys. 6, 109 (2010).

    Article  Google Scholar 

  12. J. Dai et al, Phys. Rev. B 89, 165140 (2014).

    Article  ADS  Google Scholar 

  13. M. Calandra, I.I. Mazin and F. Mauri, Phys. Rev. B 80, 241108 (2009).

    Article  ADS  Google Scholar 

  14. S. Lebegue and O. Eriksson, Phys. Rev. B 79, 115409 (2009).

    Article  ADS  Google Scholar 

  15. P. Darancet, A.J. Millis and C.A. Marianetti, Phys. Rev. B 90, 45134 (2014).

    Article  ADS  Google Scholar 

  16. J-P Peng et al, Phys. Rev. B 91, 121113 (2015).

    Article  ADS  Google Scholar 

  17. M. M. Ugeda et al, Nat. Phys. 12, 92 (2016).

    Article  Google Scholar 

  18. J. Yang et al, Appl. Phys. Lett. 105, 63109 (2014).

    Article  Google Scholar 

  19. G. Duvjir et al, Nanoscale 11, 20096 (2019).

    Article  Google Scholar 

  20. W. Yu et al, Adv. Mater. 31, 1903779 (2019).

    Article  Google Scholar 

  21. Y. Ma et al, ACS Nano 6, 1695 (2012).

    Article  Google Scholar 

  22. H-R. Fuh et al, Sci. Rep. 6, 32625 (2016).

    Article  ADS  Google Scholar 

  23. H-R. Fuh et al, New J. Phys. 18, 113038 (2016).

    Article  ADS  Google Scholar 

  24. M. Bonilla et al, Nat. Nanotechnol. 13, 289 (2018).

    Article  ADS  Google Scholar 

  25. T. J. Kim et al, https://arxiv.org/abs/1907.04790 (2019).

  26. G. Duvjir et al, Nano Lett. 18, 5432 (2018).

    Article  ADS  Google Scholar 

  27. P. M. Coelho et al, J. Phys. Chem. C 123, 14089 (2019).

    Article  Google Scholar 

  28. M. Bayard and M. J. Sienko, J. Solid State Chem. 19, 325 (1976).

    Article  ADS  Google Scholar 

  29. V. N. Strocov et al, Phys. Rev. Lett. 109, 86401 (2012).

    Article  ADS  Google Scholar 

  30. D. J. Eaglesham, R. L. Withers and D. M. Bird, J. Phys. C: Solid State Phys. 19, 359 (1986).

    Article  ADS  Google Scholar 

  31. B. Giambattista et al, Phys. Rev. B 41, 10082 (1990).

    Article  ADS  Google Scholar 

  32. P. K. J. Wong et al, Adv. Mater. 31, 1901185 (2019).

    Article  Google Scholar 

  33. J. Kim et al, Rev. Sci. Instrum. 86, 093707 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 2018 Research Fund of the University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungdae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ly, T.T., Duvjir, G., Lam, N.H. et al. √3 × 2 and √3 × √7 Charge Density Wave Driven by Lattice Distortion in Monolayer VSe2. J. Korean Phys. Soc. 76, 412–415 (2020). https://doi.org/10.3938/jkps.76.412

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.412

Keywords

Navigation