Skip to main content
Log in

Optical Polarization Characteristics of Low-Earth-Orbit Space Targets

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study investigates the optical polarization characteristics of low-earth-orbit (LEO) space targets at different operating attitudes for different surface materials by analyzing these characteristics using a microfacet analysis model. Subsequently, the polarization image of a typical LEO space target was simulated, and several laboratory and outfield polarization detection experiments were conducted. Simulated and experimental results validate the effectiveness of polarization in analyzing and evaluating the operating attitudes of the LEO space targets and in identifying their material properties. Results show that the polarization images can effectively determine the constituent structure of the LEO space targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Li, Y. Zhao, Q. Pan and S. G. Kong, Opt. Express 27, 1376 (2019).

    Article  ADS  Google Scholar 

  2. Z. Sun, D. Wu, Y. Lu and S. Lu, IEEE T. Geosci. Remote 57, 4388 (2019).

    Article  ADS  Google Scholar 

  3. L. Meng and J. P. Kerekes, IEEE T. Geosci. Remote 52, 6615 (2014).

    Article  ADS  Google Scholar 

  4. B. Kanseri and K. R. Sethuraj, Opt. Lett. 44, 159 (2019).

    Article  ADS  Google Scholar 

  5. T. Hu et al., Atmosphere 10, 342 (2019).

    Article  ADS  Google Scholar 

  6. A-L. Sahlberg et al., Appl. Spectrosc. 73, 653 (2019).

    Article  ADS  Google Scholar 

  7. M. Alizadeh, M. Ghotbi, P. Loza-Alvarez and D. Merino, Methods Protoc. 2, 49 (2019).

    Article  Google Scholar 

  8. B. Ben-Dor, U. P. Oppenheim and L. S. Balfour, in Proceedings Volume 1971, 8th Meeting on Optical Engineering in Israel: Optical Engineering and Remote Sensing; (1993), Event: 8th Meeting in Israel on Optical Engineering, 1992, Tel Aviv, Israel.

  9. R. Nothdurft and G. Yao, Opt. Express 13, 4185 (2005).

    Article  ADS  Google Scholar 

  10. J. E. Solomon, Appl. Optics 20, 1537 (1981).

    Article  ADS  Google Scholar 

  11. W. Shen et al., Opt. Lett. 43, 1255 (2018).

    Article  ADS  Google Scholar 

  12. X. Ju et al., Appl. Optics 57, 8600 (2018).

    Article  ADS  Google Scholar 

  13. G. H. Sanders, J. Astrophys. Astron. 34, 81 (2013).

    Article  ADS  Google Scholar 

  14. S. Gunnels, “The Giant Magellan telescope (GMT): Gregorian instrument rotator bearing,” Proc. SPIE 91455E (2014).

  15. Z. Huang, R. Huang and X. Xue, Appl. Sci. 8, 2604 (2018).

    Article  Google Scholar 

  16. X. Liang, J. Zhou and W. Ma, Appl. Optics 58, 5136 (2019).

    Article  ADS  Google Scholar 

  17. D. Zhang, Q. Y. Yang and T. Chen, Appl. Optics 58, 4337 (2019).

    Article  ADS  Google Scholar 

  18. R. Bourgois and R. Geyl, “Manufacturing ELT optics: Year 2 report,” 2019, Optical Fabrication and Testing, Paper# OM3A.3.

  19. A. H. Bouchez et al., in Adaptive Optics Systems IV, Vol. 9148, p. 91480W. International Society for Optics and Photonics, 2014, DOI: https://doi.org/10.1117/12.2057613.

    Article  Google Scholar 

  20. X. Zhang et al., Opt. Express 27, 11651 (2019).

    Article  ADS  Google Scholar 

  21. Y. Li, X. Xia and Y. M. Paulus, Photonics 5, 9 (2018).

    Article  Google Scholar 

  22. C. González-Gutiérrez et al., Sensors 17, 1263 (2017).

    Article  Google Scholar 

  23. D. Li et al., Sensors 17, 785 (2017).

    Article  Google Scholar 

  24. O. Korotkova, Opt. Lett. 40, 3077 (2015).

    Article  ADS  Google Scholar 

  25. G. Wang, J. Wang, Z. Zhang and W. Zeng, Acta Photonica Sinica 45, 0410003–1 (2016).

    Article  Google Scholar 

  26. R. G. Priest and S. R. Meier, Opt. Eng. 41, 988 (2002).

    Article  ADS  Google Scholar 

  27. X. Lu et al., Opt. Express 26, 2495 (2018).

    Article  ADS  Google Scholar 

  28. A. M. Phenis, M. Virgen and E. E. de Leon, In Novel Optical Systems Design and Optimization VIII (Vol. 5875, p. 587502). International Society for Optics and Photonics.

  29. J. Mudge, M. Virgen and P. Dean, In Polarization Science and Remote Sensing IV (Vol. 7461, p. 74610L). International Society for Optics and Photonics.

Download references

Acknowledgments

The authors would like to thank Dr. Yao Kainan, Changchun Institute of Optics, Fine Mechanisms and Physics, for providing the satellite scale model and Dr. Wang Guocong and Dr. Li Tianci for their useful discussions and remarks. This research was supported by Fundamental Research Funds for the Central Universities (3132019141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenduo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wu, Y. & Li, Z. Optical Polarization Characteristics of Low-Earth-Orbit Space Targets. J. Korean Phys. Soc. 76, 311–317 (2020). https://doi.org/10.3938/jkps.76.311

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.311

Keywords

Navigation