Skip to main content
Log in

Gravitational Wave from Cosmic Inflation in a Gravity with Two Small Four-derivative Corrections

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate a model of inflationary cosmology where the minimally coupled scalar field theory is modified by additional correction terms. Among the most general ten correction terms remarked by Weinberg in context of effective field theory, we consider only two terms, f1(ϕ)R2 and f2(ϕ)RabRab, following the work by Noh and Hwang where f1 and f2 are constant. The fourth order differential equations for the background universe and the tensor-type perturbation are derived out of this model. We show that these equations can be reduced to second order equations, supposing that fn are small. From these approximated equations, we find that the propagation speed of gravitational wave is slightly less than the speed of light due to f2 term, and that the evolution of the tensor-type perturbation is conserved in the large scale limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Phys. Rev. D 77, 123541 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  2. V. F. Mukhanov, JETP Lett. 41, 493 (1985).

    ADS  Google Scholar 

  3. V. F. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  4. S. Weinberg, Cosmology (Oxford University Press, New York, 2008).

    MATH  Google Scholar 

  5. E. Elizalde, A. Jacksenaev, S. D. Odintsov and I. L. Shapiro, Phys. Lett. B 328, 297 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  6. E. Elizalde, A. Jacksenaev, S. D. Odintsov and I. L. Shapiro, Classical Quantum Gravity 12, 1385 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  7. B. S. DeWitt, Phys. Rev. 162, 1239 (1967).

    Article  ADS  Google Scholar 

  8. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).

    Book  MATH  Google Scholar 

  9. H. Weyl, Sitzungsber. d. Preuss. Akad. Wiss. 2, 465 (1918) (cited in [21]).

    Google Scholar 

  10. W. Pauli, Phys. Z. 20, 457 (1919) (cited in [21]).

    Google Scholar 

  11. A. S. Eddington, Proc. R. Soc. London A99, 104 (1921) (JSTOR).

    ADS  Google Scholar 

  12. A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).

    Article  ADS  Google Scholar 

  13. T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010).

    Article  ADS  Google Scholar 

  14. R. Kallosh and A. Linde, J. Cosmol. Astropart. Phys. 1306, 027 (2013).

    Article  ADS  Google Scholar 

  15. A. Linde, M. Noorbala and A. Westpal, J. Cosmol. Astropart. Phys. 1103, 013 (2011).

    Article  ADS  Google Scholar 

  16. F. Bezrukov and M. Shaposhnikov, J. High Energy Phys. 07, 089 (2009).

    Article  ADS  Google Scholar 

  17. J. Hwang and H. Noh, Phys. Rev. Lett. 81, 5274 (1998).

    Article  ADS  Google Scholar 

  18. Planck Collaboration, Astron. Astrophys. 594, A20 (2016).

    Article  Google Scholar 

  19. E. Copeland, M. Sami and S. Tsujikawa, arXiv:hepth/0603057 (2006).

  20. L. Amendola and S. Tsujikawa, Dark Energy (Cambridge University Press, Cambridge, 2010).

    Book  MATH  Google Scholar 

  21. H. Noh and J. Hwang, Phys. Rev. D 55, 5222 (1997).

    Article  ADS  Google Scholar 

  22. S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time (Cambridge University Press, New York, 1973).

    Book  MATH  Google Scholar 

  23. J. Hwang and H. Noh, Phys. Rev. D 71, 063536 (2005).

    Article  ADS  Google Scholar 

  24. C. Yun, Cosmological perturbations in higher-derivative effective field theories, MSc thesis, Kyungpook National University, 2009.

  25. N. H. Barth and S. M. Christensen, Phys. Rev. D 28, 1876 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).

    Google Scholar 

  27. J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Hwang, Publ. Korean Astron. Soc. 26, 55 (2011) (in Korean with English abstract).

    ADS  Google Scholar 

  29. H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1 (1984).

    Article  ADS  Google Scholar 

  30. V. F. Mukhanov, H. A. Feldmann and R. H. Brandenberger, Phys. Rep. 55, 203 (1992).

    Article  ADS  Google Scholar 

  31. J. Z. Simon, Phys. Rev. D 41, 3720 (1989).

    Article  ADS  Google Scholar 

  32. J. Z. Simon, Phys. Rev. D 43, 3308 (1990).

    Article  ADS  Google Scholar 

  33. L. Parker and J. Z. Simon, Phys. Rev. D 47, 1339 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  34. A. R. Solomon and M. Trodden, J. Cosmol. Astropart. Phys. 02, 031 (2018).

    Article  ADS  Google Scholar 

  35. M. Sasaki, Prog. Theor. Phys. 76, 1036 (1986).

    Article  ADS  Google Scholar 

  36. N. Yunes and X. Siemens, Living Rev. Relativ. 16, 9 (2013).

    Article  ADS  Google Scholar 

  37. D. Garfinkle, F. Pretorius and N. Yunes, Phys. Rev. D 82, 041501 (2010).

    Article  ADS  Google Scholar 

  38. P. Creminelli and F. Vernizzi, Phys. Rev. Lett. 119, 251302 (2017).

    Article  ADS  Google Scholar 

  39. G. B. Field and L. C. Shepley, Astrophys. Space Sci. 1, 309 (1968).

    Article  ADS  Google Scholar 

  40. C. Armendáriz-Picón, T. Damour and V. Mukhanov, Phys. Lett. 458B, 209 (1999).

    Article  ADS  Google Scholar 

  41. C. Kiefer and M. Krämer, Phys. Rev. Lett. 108, 021301 (2012).

    Article  ADS  Google Scholar 

  42. G. F. R. Ellis, R. Maartens and M. A. H. Mac-Callum, Relativistic Cosmology (Cambridge University Press, New York, 2012).

    Book  Google Scholar 

  43. M. Gasperini, Elements ofString Cosmology (Cambridge University Press, New York, 2007).

    Book  MATH  Google Scholar 

  44. M. Gasperini and G. Veneziano, Phys. Rep. 373, 1 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Green, J. Schwarz and E. Witten, Superstring Theory (Cambridge University Press, New York, 1987).

    MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to Prof. J. Hwang for his teachings on cosmology and to Prof. S. G. Jo for his thoughtful advice and critical review. The author also thanks Prof. C.-G. Park for his much help in Mathematica usage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chae-min Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, Cm. Gravitational Wave from Cosmic Inflation in a Gravity with Two Small Four-derivative Corrections. J. Korean Phys. Soc. 76, 292–296 (2020). https://doi.org/10.3938/jkps.76.292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.292

Keywords

Navigation