Skip to main content
Log in

Doping-Site Dependence of Upconversion Emission of Ho3+ Ion in BaHfO3

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigated the doping-site dependence of photoluminescence and upconversion (UC) emission characteristics of Ho3+ and Yb3+ co-doped BaHfO3 polycrystals. Under 980-nm near-infrared excitation, we detected sizable green (550 nm) and red (660 and 760 nm) UC emissions from Ho3+ ions based on the assistance of Yb3+ ions as sensitizers. These emission features showed strong temperature-dependent variation and became more intense with decreasing temperature. Notably, the UC emission from Ho3+ was stronger in the samples in which the Ho3+/Yb3+ dopants were substituted for Hf4+ ions rather than for Ba2+ ions. The results suggest that the asymmetry ratio of the crystal field surrounding the Ho3+ ions should be an important factor for the UC emission properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Auzel, Chem. Rev. 104, 139 (2004).

    Article  Google Scholar 

  2. B. Zhou, B. Shi, D. Jin and X. Liu, Nat. Nanotechnol. 10, 924 (2015).

    Article  ADS  Google Scholar 

  3. S. Grubb, K. Bennett, R. Cannon and W. Humer, Electron. Lett. 28, 1243 (1992).

    Article  ADS  Google Scholar 

  4. E. Downing, L. Hesselink, J. Ralston and R. Macfarlane, Science 273, 1185 (1996).

    Article  ADS  Google Scholar 

  5. G. Maciel, A. Biswas, R. Kapoor and P. Prasad, Appl. Phys. Lett. 76, 1978 (2000).

    Article  ADS  Google Scholar 

  6. M. J. Nee, R. McCanne, K. J. Kubarych and M. Joffre, Opt. Lett. 32, 713 (2007).

    Article  ADS  Google Scholar 

  7. M. Ilhan, Solid State Sci. 38, 160 (2014).

    Article  ADS  Google Scholar 

  8. H. Li, Y. Zhang, L. Shao, P. Yuan and X. Xia, J. Lumin. 192, 999 (2017).

    Article  Google Scholar 

  9. W. Xu et al., Sens. Actuator B-Chem. 188, 1096 (2013).

    Article  Google Scholar 

  10. V. Singh et al., Spectrochim. Acta A. 108, 141 (2013).

    Article  ADS  Google Scholar 

  11. J. Lim, D. Kim and Y. Lee, J. Korean. Phys. Soc. 73, 955 (2018).

    Article  ADS  Google Scholar 

  12. L. Yang et al., Nanoscale 2, 2805 (2010).

    Article  ADS  Google Scholar 

  13. G. Glaspell, J. Anderson, J. R. Wilkins and M. S. El-Shall, J. Phys. Chem. C 112, 11527 (2008).

    Article  Google Scholar 

  14. M. Malinowski et al., J. Alloys Compd. 300, 389 (2000).

    Article  Google Scholar 

  15. J. Li et al., J. Alloys Compd. 582, 623 (2014).

    Article  Google Scholar 

  16. F. Elan et al., Opt. Mater. 60, 313 (2016).

    Article  ADS  Google Scholar 

  17. X. Li et al., J. Alloys Compd. 454, 510 (2008).

    Article  Google Scholar 

  18. C. Jiang et al., Appl. Phys. Lett. 94, 071110 (2009).

    Article  ADS  Google Scholar 

  19. A. Dobrowolska and E. Zych, Chem. Mater. 22, 4652 (2010).

    Article  Google Scholar 

  20. Y. Zhang, J. Hao, C. L. Mak and X. Wei, Opt. Express 19, 1824 (2011).

    Article  ADS  Google Scholar 

  21. M. K. Mahata et al., Phys. Chem. Chem. Phys. 17, 20741 (2015).

    Article  Google Scholar 

  22. S. Gong et al., J. Phys. Chem. C 118, 5486 (2014).

    Article  Google Scholar 

  23. R. Debnath and S. Das, Chem. Phys. Lett. 155, 52 (1989).

    Article  ADS  Google Scholar 

  24. J. Chen et al., ACS Appli. Mater. Interfaces 8, 20856 (2016).

    Article  Google Scholar 

  25. E. Malchukova and B. Boizot, J. Rare Earth. 32, 217 (2014).

    Article  Google Scholar 

  26. Y. M. Kim et al., APL Materials 5, 016104 (2017).

    Article  ADS  Google Scholar 

  27. Y. Ji et al., Opt. Mater. 28, 436 (2006).

    Article  ADS  Google Scholar 

  28. A. Dobrowolska and E. Zych, Z. Kristallogr. Supplements 2009, 367 (2009).

    Article  ADS  Google Scholar 

  29. I. Seferis et al., J. Lumin. 189, 148 (2017).

    Article  Google Scholar 

  30. C. Jeon et al., Curr. Appl. Phys. 15, 115 (2015).

    Article  ADS  Google Scholar 

  31. C. Lei, X-H. Wei and F. Xu, T. Nonferr. Metal. Soc. 22, 1156 (2012).

    Article  Google Scholar 

  32. P. A. Cox, Transition Metal Oxides: an Introduction to Their Electronic Structure and Properties (Oxford University Press, 2010).

  33. L. Luo et al., J. Appl. Phys. 114, 124104 (2013).

    Article  ADS  Google Scholar 

  34. D. Yu, X. Huang, S. Ye and Q. Zhang, J. Alloys Compd. 509, 9919 (2011).

    Article  Google Scholar 

  35. W. Xu et al., Opt. Express 20, 18127 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2018R1D1A1A02086130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, H., Jang, S. & Lee, Y.S. Doping-Site Dependence of Upconversion Emission of Ho3+ Ion in BaHfO3. J. Korean Phys. Soc. 76, 155–161 (2020). https://doi.org/10.3938/jkps.76.155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.155

Keywords

Navigation