Skip to main content
Log in

Investigation of Light-sail and Hole-boring Radiation Pressure Accelerations upon the Interaction of Ultra-intense Laser Pulses with Thin Targets

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The radiation pressure acceleration (RPA) scheme with a circularly polarized laser pulse is well-known to provide an efficient generation of intense, energetic quasi-monochromatic ion beams. Depending on the thickness of targets, the RPA appears in two distinct modes: the light-sail (LS) RPA, which develops in ultrathin targets, and the hole-boring (HB) RPA, which develops in relatively thick targets. In this work, we investigated the ion acceleration dynamics of the LS-RPA and the HB-RPA through a fully relativistic particle-in-cell (PIC) simulation. The transition and competition between LS- and HB-RPA modes are investigated with suitable explanations of a one-dimensional (1D) theoretical model. To check the validity of the 1D results and investigate the multi-dimensional effects, two-dimensional simulations are also carried out. The present work may provide a deeper understanding of RPA and useful guidelines for generating high-quality and high-fluence ion beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Daido, M. Nishiuchi and A. S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012).

    Article  ADS  Google Scholar 

  2. J. F. L. Simmons and C. R. McInnes, Am. J. Phys. 61, 205 (1993).

    Article  ADS  Google Scholar 

  3. M. Tabak et al., Phys. Plasmas 1, 1626 (1994).

    Article  ADS  Google Scholar 

  4. S. V. Bulanov et al., Phys. Lett. A 299, 240 (2002).

    Article  ADS  Google Scholar 

  5. J. A. Cobble et al., J. Appl. Phys. 92, 1775 (2002).

    Article  ADS  Google Scholar 

  6. A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer (Springer, 2013).

  7. M. Roth and M. Schollmeier, in The CAS-CERN Accelerator School: Plasma Wake Acceleration, edited by B. Holzer (Geneva, Switzerland, 23–29 November 2014), CERN-2016-001 (2016).

  8. A. Robinson et al., New J. Phys. 10, 013021 (2008).

    Article  ADS  Google Scholar 

  9. N. P. Dover and Z. Najmudin, High Energy Density Phys. 8, 170 (2012).

    Article  ADS  Google Scholar 

  10. T. Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004).

    Article  ADS  Google Scholar 

  11. A. Macchi, C. Livi and A. Sgattoni, J. Instrum. 12, C04016 (2017).

    Article  Google Scholar 

  12. B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010).

    Article  ADS  Google Scholar 

  13. T. V. Liseykina, M. Borghesi, A. Macchi and S. Tuveri, Plasma Phys. Control. Fusion 50, 124033 (2008).

    Article  ADS  Google Scholar 

  14. S. M. Weng et al., Matter Radiat. Extr. 3, 28 (2018).

    Article  Google Scholar 

  15. C. A. J. Palmer et al., Phys. Rev. Lett. 106, 014801 (2011).

    Article  ADS  Google Scholar 

  16. S. Kar et al., Plasma Phys. Control. Fusion 55, 124030 (2013).

    Article  ADS  Google Scholar 

  17. I. J. Kim et al., Phys. Plasmas 23, 070701 (2016).

    Article  ADS  Google Scholar 

  18. H. Hora et al., Phys. Plasmas 14, 072701 (2007).

    Article  ADS  Google Scholar 

  19. A. P. L. Robinson, P. Gibbon, M. Zepf and S. Kar, Plasma Phys. Control. Fusion 51, 024004 (2009).

    Article  ADS  Google Scholar 

  20. A. Macchi, S. Veghini and F. Pegorano, Phys. Rev. Lett. 103, 085003 (2009).

    Article  ADS  Google Scholar 

  21. M. Tushentsov, A. Kim, F. Cattani and D. Anderson, Phys. Rev. Lett. 87, 275002 (2001).

    Article  ADS  Google Scholar 

  22. V. I. Eremin, A. V. Korzhimanov and A. V. Kim, Phys. Plasmas 17, 043102 (2010).

    Article  ADS  Google Scholar 

  23. T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, et al., Plasma Phys. Control. Fusion 57, 113001 (2015).

    Article  ADS  Google Scholar 

  24. L. Yin, B. J. Albright, B. M. Hegelich and J. C. Fernndez, Laser Part. Beams 24, 291 (2006).

    Article  ADS  Google Scholar 

  25. W. Ma et al., Nano Lett. 7, 2307 (2007).

    Article  ADS  Google Scholar 

  26. M. Grech et al., New J. Phys. 13, 123003 (2011).

    Article  ADS  Google Scholar 

  27. S. C. Wilks and W. L. Kruer, IEEE J. Quant. Electron. 33, 1954 (1997).

    Article  ADS  Google Scholar 

  28. Y. Wan et al., Phys. Rev. E 98, 013202 (2018).

    Article  ADS  Google Scholar 

  29. D. Wu et al., Phys. Rev. E 90, 023101 (2014).

    Article  ADS  Google Scholar 

  30. M. L. Zhou et al., Phys. Plasmas 23, 083109 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Young Investigator Research Program of Chung-Ang University in 2008.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Yun Shin or Sang June Hahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S.Y., Park, S.Y. & Hahn, S.J. Investigation of Light-sail and Hole-boring Radiation Pressure Accelerations upon the Interaction of Ultra-intense Laser Pulses with Thin Targets. J. Korean Phys. Soc. 75, 968–977 (2019). https://doi.org/10.3938/jkps.75.968

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.968

Keywords

Navigation