Skip to main content
Log in

Demonstration of the Hayden-Preskill Protocol via Mutual Information

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We construct the Hayden-Preskill protocol by using a system of spin-1/2 particles and demonstrate information flows of this system which can mimic black holes. We first define an analogous black hole A as a collection of such particles. Second, we take the particles from inside to outside the black hole to define an analogous system of Hawking radiation B as outside particles. When the black hole and the radiation have the maximum entanglement at the Page time, we take an entangled pair system C and D. The particles of C fall into the black hole while their counterparts of D remain outside. If we assume rapid mixing of the particle states in the black hole AC, can the information of C rapidly escape from the black hole like a mirror? We numerically show that if we turn on the rapid mixing in the black hole, the original information of C rapidly escapes from the black hole to outside in the form of the mutual information between B and D. On the other hand, if the mixing between A and C is not enough, the information escapes slowly. Hence, we explicitly demonstrate the original conjecture of Hayden and Preskill. We emphasize that enough mixing is an essential condition to make the Hayden-Preskill protocol functionally work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Hawking, Phys. Rev. D 14, 2460 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  2. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975). [Erratum-ibid. 46, 206 (1976)].

    Article  ADS  Google Scholar 

  3. D. N. Page, Phys. Rev. Lett. 71, 1291 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  4. D. N. Page, Phys. Rev. Lett. 71, 3743 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  5. D. N. Page, JCAP 1309, 028 (2013).

    Article  ADS  Google Scholar 

  6. J. Hwang et al., Class. Quant. Grav. 34, no. 14, 145004 (2017).

    Article  ADS  Google Scholar 

  7. J. Hwang, H. Park, D. Yeom and H. Zoe, J. Korean Phys. Soc. 73, no. 10, 1420 (2018).

    Article  ADS  Google Scholar 

  8. S. Lloyd and H. Pagels, Annals Phys. 188, 186 (1988).

    Article  ADS  Google Scholar 

  9. A. Alonso-Serrano and M. Visser, Phys. Lett. B 776, 10 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Susskind, L. Thorlacius and J. Uglum, Phys. Rev. D 48, 3743 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Yeom and H. Zoe, Phys. Rev. D 78, 104008 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  12. S. E. Hong, D. Hwang, E. D. Stewart and D. Yeom, Class. Quant. Grav. 27, 045014 (2010).

    Article  ADS  Google Scholar 

  13. D. Yeom, Int. J. Mod. Phys. Conf. Ser. 1, 311 (2011).

    Article  Google Scholar 

  14. P. Chen, Y. C. Ong and D. Yeom, JHEP 1412, 021 (2014).

    Article  ADS  Google Scholar 

  15. D. Yeom and H. Zoe, Int. J. Mod. Phys. A 26, 3287 (2011).

    Article  ADS  Google Scholar 

  16. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, JHEP 1302, 062 (2013).

    Article  ADS  Google Scholar 

  17. A. Almheiri et al., JHEP 1309, 018 (2013).

    Article  ADS  Google Scholar 

  18. P. Chen, Y. C. Ong and D. Yeom, Phys. Rept. 603, 1 (2015).

    Article  ADS  Google Scholar 

  19. J. Smolin and J. Oppenheim, Phys. Rev. Lett. 96, 081302 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Hwang, B. -H. Lee and D. Yeom, JCAP 1301, 005 (2013).

    Article  ADS  Google Scholar 

  21. W. Kim, B. -H. Lee and D. Yeom, JHEP 1305, 060 (2013).

    Article  ADS  Google Scholar 

  22. B. -H. Lee and D. Yeom, Nucl. Phys. Proc. Suppl. 246–247, 178 (2014).

    Article  ADS  Google Scholar 

  23. P. Chen et al., Phys. Rev. Lett. 116, 161304 (2016).

    Article  ADS  Google Scholar 

  24. S. B. Giddings, Phys. Rev. D 51, 6860 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Hayden and J. Preskill, JHEP 0709, 120 (2007).

    Article  ADS  Google Scholar 

  26. G. T. Horowitz and J. M. Maldacena, JHEP 0402, 008 (2004).

    Article  ADS  Google Scholar 

  27. S. E. Hong, D. Hwang, D. Yeom and H. Zoe, JHEP 0812, 080 (2008).

    Article  ADS  Google Scholar 

  28. D. Yeom and H. Zoe, J. Korean Phys. Soc. 63, 1109 (2013).

    Google Scholar 

  29. L. Susskind and L. Thorlacius, Phys. Rev. D 49, 966 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  30. K. S. Thorne, R. H. Price and D. A. Macdonald, Black Holes: The Membrane Paradigm (Yale University Press, 1986).

  31. P. Chen and D. Yeom, Phys. Rev. D 96, no. 2, 025016 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Sasaki and D. Yeom, JHEP 1412, 155 (2014).

    Article  ADS  Google Scholar 

  33. B. H. Lee, W. Lee and D. Yeom, Phys. Rev. D 92, no. 2, 024027 (2015).

    Article  ADS  Google Scholar 

  34. P. Chen, G. Domènech, M. Sasaki and D. Yeom, JCAP 1604, no. 04, 013 (2016).

    ADS  Google Scholar 

  35. P. Chen, G. Domènech, M. Sasaki and D. Yeom, JHEP 1707, 134 (2017).

    Article  ADS  Google Scholar 

  36. P. Chen, M. Sasaki and D. Yeom, Eur. Phys. J. C 79, 627 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

DY was supported by the National Research Foundation of Korea (Grant No.: 2018R1D1A1B07049126). This work was supported by the Daegu Gyeongbuk Institute of Science and Technology (DGIST) Undergraduate Group Research Project (UGRP) grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong-Myeong Bae, Subeom Kang, Dong-han Yeom or Heeseung Zoe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, JM., Kang, S., Yeom, Dh. et al. Demonstration of the Hayden-Preskill Protocol via Mutual Information. J. Korean Phys. Soc. 75, 941–947 (2019). https://doi.org/10.3938/jkps.75.941

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.941

Keywords

Navigation