Skip to main content
Log in

Performance Test of a Laboratory-Based Ambient Pressure X-ray Photoelectron Spectroscopy System at the Gwangju Institute of Science and Technology

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The performance test of a laboratory based ambient pressure X-ray photoelectron spectroscopy (AP-XPS) system at the Gwangju Institute of Science and Technology (GIST) was carried out. The system, consisted of a Scienta R4000 HiPP-3 electron analyzer and a monochromatized Al Kα X-ray source, is designed to operate a gas pressure of up to 25 Torr. An Al polyimide X-ray window is used to isolate the X-ray source from the back-filled-type ambient pressure measurement chamber. Two modes of XPS operations were tested, a one-dimensional chemical imaging mode and a transmission mode. In the transmission mode, the lens voltage of analyzer was optimized for maximum detection of photo-excited electrons under elevated pressure condition, i.e., a typical standard lens operation mode. On the other hand, in the imaging mode, spatial information on the outgoing electrons is conserved to generate a one-dimensional chemical image of surface being measured. The test of the imaging mode on a Au/Si reference sample showed a spatial resolution of ∼10 µm under an Ar gas pressure of 500 mTorr. With the superb design of the differential pump and the electron transfer optics, a good signal-to-noise ratio was obtained for the XPS core-level spectra at Ar gas pressure up to 1 Torr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zangwill, Physics at Surfaces (Cambridge University Press, New York, 1988).

    Book  Google Scholar 

  2. Z. Zhongwei, Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces, High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies, No. LBNL-6577E, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, 2013.

    Google Scholar 

  3. C. R. Brundle and A. D. Baker, Electron Spectroscopy: Theory, Techniques and Applications (Academic Press, London, 1978), Vol. 2.

    Google Scholar 

  4. K. Siegbahn et al., ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy (Almqvist and Wiksell, Uppsala, 1967).

    Google Scholar 

  5. C. S. Fadley et al., Electron Spectroscopy: Theory, Techniques, and Applications (Academic, London 1978), Vol. 2.

    Google Scholar 

  6. S. Hüfner, Photoelectron Spectroscopy: Principles and Applications, 3rd ed. (Springer-Verlag, Berlin, Heidelberg, New York, 2003).

    Book  Google Scholar 

  7. K. Siegbahn et al., ESCA Applied to Free Molecules (North-Holland, Amsterdam, 1970).

    Google Scholar 

  8. C. S. Fadley, J. Electron. Spectrosc. Rel. Phen. 5 (1974).

  9. C. S. Fadley, Progress in Surface Science (Pergamon Press, New York, 1984).

    Google Scholar 

  10. C. R. Brundle, J. Vacuum Sci. Technol. 11, 212 (1974).

    Article  ADS  Google Scholar 

  11. M. Salmeron and R. Schlögl, Surf. Sci. Rep. 63, 4 (2008).

    Article  Google Scholar 

  12. J. Y. Park, Current Trends of Surface Science and Catalysis (Springer, New York, 2014).

    Book  Google Scholar 

  13. G. Rupprechter, Annu. Rep. Prog. Chem. Sect., C: Phys. Chem. 100, 237 (2004).

    Article  Google Scholar 

  14. G. Rupprechter and C. Weilach, J. Phys. Condens. Mater. 20, 184019 (2008).

    Article  ADS  Google Scholar 

  15. K. Siegbahn et al., ESCA Applied to Free Molecules (North-Holland Publishing Company, 1969).

  16. H. Siegbahn, J. Phys. Chem. 89, 897 (1985).

    Article  Google Scholar 

  17. H. Fellner-Feldegg et al., J. Electron Spectrosc. Relat. Phenom. 7, 421 (1975).

    Article  Google Scholar 

  18. H. Siegbahn, S. Svensson and M. Lundholm, J. Electron Spectrosc. Relat. Phenom. 24, 205 (1981).

    Article  Google Scholar 

  19. H. Siegbahn and M. Lundholm, J. Electron Spectrosc. Relat. Phenom. 28, 135 (1982).

    Article  Google Scholar 

  20. R. Moberg et al., J. Chem. Phys. 94, 5226 (1991).

    Article  ADS  Google Scholar 

  21. R. Moberg et al., J. Am. Chem. Soc. 113, 3663 (1991).

    Article  Google Scholar 

  22. B. Winter et al., J. Phys. Chem. A 108, 2625 (2004).

    Article  Google Scholar 

  23. B. Winter et al., J. Am. Chem. Soc. 127, 7203 (2005).

    Article  Google Scholar 

  24. D. F. Ogletree et al., Rev. Sci. Instrum. 73, 3872 (2002).

    Article  ADS  Google Scholar 

  25. M. E. Grass et al., Rev. Sci. Instrum. 81, 053106 (2010).

    Article  ADS  Google Scholar 

  26. C. Jeong et al., Curr. Appl. Phys. 16, 73 (2016).

    Article  ADS  Google Scholar 

  27. H. Bluhm et al., MRS Bull. 32, 1022 (2007).

    Article  Google Scholar 

  28. Scienta Omicron AB., Development Note: 25 mbar X-Ray Window for MX650 HP (2013).

  29. A. Funda et al., Nucl. Instrum. Methods Phys. Res. A 645, 260 (2011).

    Article  ADS  Google Scholar 

  30. Björn Wannberg, Nucl. Instrum. Methods Phys. Res. A 601, 182 (2009).

    Article  ADS  Google Scholar 

  31. Scienta Omicron AB., Scienta Omicron HiPP-2/HiPP-3 Instrument Manual v2.1 (2016).

  32. G. Kerherve et al., Rev. Sci. Instrum. 88, 033102 (2017).

    Article  ADS  Google Scholar 

  33. C. Zhang et al., Nat. Mater. 9, 11 (2010).

    Article  Google Scholar 

  34. El Gabaly et al., Phys. Chem. Chem. Phys. 12, 38 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported in part by Basic Science Research Program through grants from the National Research Foundation of Korea (NRF) funded by the Korean Government (MOE) (NRF- 2019R1A2C2008052). B. S. Mun would like to acknowledge the support from SRC (C-AXS, NRF-2015R1A5A1009962) and the GRI (GIST Research Institute) Project through a grant provided by GIST in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bongjin Simon Mun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, H., Yu, Y., Kim, D. et al. Performance Test of a Laboratory-Based Ambient Pressure X-ray Photoelectron Spectroscopy System at the Gwangju Institute of Science and Technology. J. Korean Phys. Soc. 75, 541–546 (2019). https://doi.org/10.3938/jkps.75.541

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.541

Keywords

Navigation