Skip to main content
Log in

First-Principles Study of Alkyl Derivatives of Boehmite

  • Brief Report
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Boehmite, a layer-structured AlOOH, is one of the potential candidate materials for applications to catalysis, energy storage, gas separation, and optoelectronics. Typically, the intercalation of guest molecules to boehmite layers leads to a variety of novel properties that are useful for practical applications. Here, we study the interaction between alkyl molecules and boehmite layers in alkyl derivatives of boehmite by using first-principles density-functional-theory (DFT) calculations. Two kinds of alkyl derivatives of boehmite are investigated: methyl and ethyl derivatives. We employ two different van-der-Waals-corrected computational methods based on the DFT, namely, vdW-DF2 and PBE-D2. The interlayer binding energy of alkyl chains to boehmite layers is calculated and the equilibrium interlayer distance as a function of the number of carbons in the alkyl chain is obtained. The interlayer spacing taken from vdW-DF2 is found to be in better agreement with the experimental data than that taken from PBE-D2. The calculated configurations of alkyl groups intercalated between boehmite layers are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kim, S. Iwamoto and M. Inoue, Adv. Sci. Technol. 45, 2153 (2006).

    Article  Google Scholar 

  2. M. Inoue, M. Kimura and T. Inui, Chem. Mater. 12, 55 (2000).

    Article  Google Scholar 

  3. V. Panchenko et al., J. Mol. Catal. A: Chem. 174, 107 (2001).

    Article  Google Scholar 

  4. H. Sinn and W. Kaminsky, Ziegler-Natta Catalysis (Elsevier, New York, 1980), Vol. 18, Advances in Organometallic Chemistry.

    Book  Google Scholar 

  5. V. Anisimov, M. Korotin, J. Zaanen and O. Andersen, Phys. Rev. Lett. 68, 345 (1992).

    Article  ADS  Google Scholar 

  6. M. R. Mason, J. M. Smith, S. G. Bott and A. R. Barron, J. Am. Chem. Soc. 115, 4971 (1993).

    Article  Google Scholar 

  7. T. Sugano, K. Matsubara, T. Fujita and T. Takahashi, J. Mol. Catal. 82, 93 (1993).

    Article  Google Scholar 

  8. I. Tritto, M. C. Sacchi, P. Locatelli and S. X. Li, Macromol. Chem. Phys. 197, 1537 (1996).

    Article  Google Scholar 

  9. I. Tritto, C. Méalares, M. C. Sacchi and P. Locatelli, Macromol. Chem. Phys. 198, 3963 (1997).

    Article  Google Scholar 

  10. D. W. Imhoff, L. S. Simeral, S. A. Sangokoya and J. H. Peel, Organometallics 17, 1941 (1998).

    Article  Google Scholar 

  11. D. E. Babushkin et al., Macromol. Chem. Phys. 198, 3845 (1997).

    Article  Google Scholar 

  12. M. Inoue, H. Kominami and T. Inui, J. Am. Ceram. Soc. 73, 1100 (1990).

    Article  Google Scholar 

  13. M. Inoue, Y. Kondo and T. Inui, Inorg. Chem. 27, 215 (1988).

    Article  Google Scholar 

  14. M. Inoue, H. Tanino, Y. Kondo and T. Inui, Clays Clay Miner. 39, 151 (1991).

    Article  Google Scholar 

  15. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  16. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  17. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  18. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  19. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  ADS  Google Scholar 

  20. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  Google Scholar 

  22. K. Lee et al., Phys. Rev. B 82, 081101 (2010).

    Article  ADS  Google Scholar 

  23. C. E. Corbató, R. Tettenhorst and G. Christoph, Clays Clay Miner. 33, 71 (1985).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Walailak University (Grant No. WU62230/2562). Computations were performed through the support of the Korea Institute of Science and Technology Information. Molecular structures were visualized by using the VESTA softwar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutassana Na-Phattalung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na-Phattalung, S., Jung, J.H. & Ihm, J. First-Principles Study of Alkyl Derivatives of Boehmite. J. Korean Phys. Soc. 75, 490–493 (2019). https://doi.org/10.3938/jkps.75.490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.490

Keywords

Navigation