Skip to main content
Log in

Prediction of the Current-Voltage Characteristics and the Bipolar Resistive Switching Mechanism in Polymer-Based Sandwiched Structures

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The prediction of the current-voltage (IV) characteristics of resistive switching devices has remained a challenge before their physical realization. This research work addresses the prediction of the IV characteristics and the bipolar switching mechanism of polymer-based resistive switches by examining their structures before their fabrication. The research was carried out through an analytical study of the device structure, thereby correlating the predicted IV curve to the in-situ IV characteristics of the device. Different types of the device structures were considered, depending upon the work function of the top and the bottom electrodes and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels of the sandwiched layer. We concluded that the defects/traps within the sandwiched layer lead to the interface effect being the dominant switching mechanism driving the polymer-based resistive switches. Furthermore, we also found that the devices following the interface effect are driven from trap-limited space-charge-limited current (SCLC) conduction to trap-free SCLC conduction as their current conduction mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Yang, D. B. Strukov and D. R. Stewart, Nat. Nanotechnol. 8, 13 (2013).

    Article  ADS  Google Scholar 

  2. S. K. Hong, J. E. Kim, S. O. Kim and B. J. Cho, J. Appl. Phys. 110, 044506 (2011).

    Article  ADS  Google Scholar 

  3. M. N. Awais and K. H. Choi, Electron. Lett. 51, 2147 (2015).

    Article  Google Scholar 

  4. H. Nili et al., Adv. Funct. Mater. 24, 1 (2014).

    Article  Google Scholar 

  5. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).

    Article  ADS  Google Scholar 

  6. R. Waser, R. Dittmann, G. Staikov and K. Szot, Adv. Funct. Mater. 21, 2632 (2009).

    Article  Google Scholar 

  7. C. Y. Lin et al., J. Appl. Phys. 102, 094101 (2007).

    Article  ADS  Google Scholar 

  8. Y. Yang et al., Adv. Funct. Mater. 16, 1001 (2006).

    Article  Google Scholar 

  9. Q. D. Ling et al., Prog. Polym. Sci. 33, 917 (2008).

    Article  Google Scholar 

  10. M. Mustafa, M. N. Awais, G. Poonia and K. H. Choi, J. Korean Phys. Soc. 61, 470 (2012).

    Article  ADS  Google Scholar 

  11. T. Lee and Y. Chen, Mater. Res. Bull. 37, 144 (2012).

    Article  Google Scholar 

  12. M. Lin et al., Polymers 9, 1 (2017).

    Article  Google Scholar 

  13. M. C. Lia et al., Solid State Electronics 148, 1 (2018).

    Article  ADS  Google Scholar 

  14. M. A. Lampert and P. Mark, Current Injection in Solids (Academic Press, New York, 1970).

    Google Scholar 

  15. M. Bajpai et al., Synth. Met. 160, 1740 (2010).

    Article  Google Scholar 

  16. M. Arif et al., Phys. Rev. B 75, 195202 (2007).

    Article  ADS  Google Scholar 

  17. T. W. Kim et al., Appl. Phys. Lett. 92, 253308 (2008).

    Article  ADS  Google Scholar 

  18. M. N. Awais and K. H. Choi, Electron. Mater. Lett. 10, 601 (2014).

    Article  ADS  Google Scholar 

  19. M. N. Awais et al., Micro Nano Lett. 11, 712 (2016).

    Article  Google Scholar 

  20. C. Wu, F. Li, T. Guo and T. W. Kim, Org. Electron. 13, 178 (2012).

    Article  Google Scholar 

  21. T. Ouisse and O. Stephan, Org. Electron. 5, 251 (2004).

    Article  Google Scholar 

  22. J. A. Rohr et al., J. Phys.: Condens. Matter 30, 105901 (2018).

    ADS  Google Scholar 

  23. Y. Sadaoka and Y. Sakai, J. Chem. Soc. Faraday Trans. II 72, 1911 (1976).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naeem Awais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awais, M.N., Shehzad, M.N. Prediction of the Current-Voltage Characteristics and the Bipolar Resistive Switching Mechanism in Polymer-Based Sandwiched Structures. J. Korean Phys. Soc. 75, 409–414 (2019). https://doi.org/10.3938/jkps.75.409

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.409

PACS numbers

Keywords

Navigation