Skip to main content
Log in

Measuring Dielectrophoresis Force for Metallic and Non-metallic Particle Manipulations via a Quartz Tuning Fork Atomic Force Microscope

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Dielectrophoresis (DEP) force is a widely studied topic because it has high utility in various research areas. Understanding DEP force is significant from the point of view of its efficient usage. Here, we confirmed the directions and magnitudes of DEP forces for metallic and non-metallic particle manipulations as well as force measurements via a quartz tuning fork atomic force microscopy (QTF-AFM) system. The 100 nm non-metallic silica particles having negative DEP force move toward the minimum point of the square of the electric field while the 60 nm metallic Au particles have positive DEP force. We also measured the magnitude of the DEP force in a liquid environment with electrodes. The experimentally measured DEP force magnitude was about 1 nN, which was similar to the simulation results, and the tendency of the measured force was consistent with that of the simulated case. This shows the possibility of using a QTF-AFM system as the fine force sensor in a liquid environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Pohl, J. Appl. Phys. 22, 7 (1951).

    Article  Google Scholar 

  2. H. A. Pohl, J. Appl. Phys. 29, 8 (1958).

    Article  Google Scholar 

  3. H. A. Pohl, Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields (Cambridge University Press, 1978).

  4. K. Kaler and T. Jones, Biophys. J. 57, 2 (1990).

    Article  Google Scholar 

  5. T. B. Jones, Electromechanics of Particles (Cambridge University Press, 2005).

  6. M. Hywel and G. Green Nicolas, AC Electrokinetics: Colloids and Nanoparticles (Research Studies Press Ltd, 2003).

  7. P. Tathireddy, Y-H. Choi and M. Skliar, J. Electrostat. 66, 11 (2008).

    Article  Google Scholar 

  8. B. J. Kirby, Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices (Cambridge university press, 2010).

  9. R. Pethig, Biomicrofluidics 4, 2 (2010).

    Google Scholar 

  10. J. Tang et al., Nano Lett. 5, 1 (2005).

    Article  ADS  Google Scholar 

  11. A. Slattery et al., Nanomaterials 7, 11 (2017).

    Article  Google Scholar 

  12. M. Lee et al., Appl. Phys. Lett. 91, 2 (2007).

    Google Scholar 

  13. M. Lee and W. Jhe, Phys. Rev. Lett. 97, 3 (2006).

    Google Scholar 

  14. S. An et al., Rev. Sci. Instrum. 83, 11 (2012).

    Article  Google Scholar 

  15. M. Lee et al., Faraday Discuss. 141, 415 (2009).

    Article  ADS  Google Scholar 

  16. F. J. Giessibl, Rev. Mod. Phys. 75, 3 (2003).

    Article  Google Scholar 

  17. S. An et al., Rev. Sci. Instrum. 85, 3 (2014).

    Article  Google Scholar 

  18. M. P. Hughes, Nanoelectromechanics in Engineering and Biology (CRC press, 2002).

  19. H. C. Chang and L. Y. Yeo, Electrokinetically Driven Microfluidics and Nanofluidics (Cambridge university press, 2010).

  20. P. R. Gascoyne and J. Vykoukal, Electrophoresis 23, 13 (2002).

    Article  Google Scholar 

  21. N.G. Green and H. Morgan, J. Phys. Chem. B 103, 1 (1999).

    Google Scholar 

  22. T. Honegger et al., Appl. Phys. Lett. 98, 18 (2011).

    Article  Google Scholar 

  23. K. Park, S. Kabiri and S. Sonkusale, Biomed. Microdevices 18, 1 (2016).

    Article  Google Scholar 

  24. A. Kosterev et al., Appl. Phys. B 100, 1 (2010).

    Article  Google Scholar 

  25. M. Lee et al., J. Appl. Phys. 120, 7 (2016).

    Google Scholar 

  26. S. Kim et al., Appl. Phys. Lett. 86, 15 (2005).

    Google Scholar 

  27. B. Kim et al., Proceedings of the National Academy of Sciences (2015), Vol. 112, p. 51.

    Google Scholar 

  28. J. Kim et al., Ultramicroscopy 141, 56 (2014).

    Article  Google Scholar 

  29. A.D. Slattery, J.S. Quinton, C.T. Gibson, Nanotechnology 23, 28 (2012).

    Article  Google Scholar 

  30. T. R. Albrecht, P. Grütter, D. Horne and D. Rugar, J. Appl. Phys. 69, 2 (1991).

    Article  Google Scholar 

  31. R. S. Lakes et al., Nature 410, 565 (2001).

    Article  ADS  Google Scholar 

  32. M. Lee et al., Phys. Chem. Chem. Phys. 18, 39 (2016).

    Google Scholar 

  33. N. G. Green et al., J. Phys. D Appl. Phys. 31, 7 (1998).

    Article  Google Scholar 

  34. F. Du et al., J. Electrostat. 65, 452 (2007).

    Article  Google Scholar 

  35. Z. Liu et al., J. Opt. Soc. Am. B 33, 9 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2016R1A3B1908660) and (MEST) (2017R1A6A3A11033301), and in part by the Seoul National University Research Institute of Advanced materials and inter-university Semiconductor Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonho Jhe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Kim, C., Song, H. et al. Measuring Dielectrophoresis Force for Metallic and Non-metallic Particle Manipulations via a Quartz Tuning Fork Atomic Force Microscope. J. Korean Phys. Soc. 75, 1021–1027 (2019). https://doi.org/10.3938/jkps.75.1021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.1021

Keywords

Navigation