Skip to main content
Log in

Heterogeneity of Networks Promotes Cooperation in the Prisoner’s Dilemma and the Snowdrift Game

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Complex networks are ubiquitous in real-world systems. In the last decade, the investigation of complex networks has received much attention. Most of this research suggests that the topological properties of networks have an important influence on the evolution of cooperation. In this paper, we used the prisoner’s dilemma game and snowdrift game as models to study the problem of cooperation evolution on heterogeneous random networks. We found that the heterogeneity of the networks plays a more important role in promoting cooperation than the average clustering coefficient and average path length of the networks do. The higher the heterogeneity of the networks is, the more conducive the emergence and spread of cooperation is. In addition, we found that increasing the average degree of networks would be detrimental for cooperation to thrive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. E. J. Newman, Siam Rev. 45, 167 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  2. R. M. May, Trends Ecol. Evol. 21, 394 (2006).

    Article  Google Scholar 

  3. M. Perc and A. Szolnoki, BioSystems 99, 109 (2010).

    Article  Google Scholar 

  4. R. Albert and A-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  5. L. A. N. Amaral, A. Scala, M. Barthélémy and H. E. Stanley, Proc. Natl. Acad. Sci USA 97, 11149 (2000).

    Article  ADS  Google Scholar 

  6. Y. Kim, W. Choi and S. H. Yook, J. Korean Phys. Soc. 60, 621 (2012).

    Article  ADS  Google Scholar 

  7. S. N. Dorogotsev and J. F. F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University, Oxford, 2003).

    Book  Google Scholar 

  8. F. L. Pinheiro, F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 116, 128702 (2016).

    Article  ADS  Google Scholar 

  9. F. C. Santos, J. M. Pacheco and T. Lenaerts, PLoS Comput. Biol. 2, e140 (2006).

  10. M. Nowak and K. Sigmund, Nature 437, 1291 (2005).

    Article  ADS  Google Scholar 

  11. D. J. Watts and S. H. Strogatz, Nature (London) 393, 440 (1998).

    Article  ADS  Google Scholar 

  12. M. E. J. Newman, Phys. Rev. E 64, 025102R (2001).

  13. F. C. Santos, J. F. Rodrigues and J. M. Pacheco, Phys. Rev. E 72, 056128 (2005).

    Article  ADS  Google Scholar 

  14. F. C. Santos, J. M. Pacheco and T. Lenaerts, Proc. Natl. Acad. Sci. USA 103, 3490 (2006).

    Article  ADS  Google Scholar 

  15. H. Ohtsuki, C. Hauert, E. Lieberman and M. A. Nowak, Nature 441, 502 (2006).

    Article  ADS  Google Scholar 

  16. H. Ohtsuki, Y. Iwasa and M. A. Nowak, Nature 457, 79 (2009).

    Article  ADS  Google Scholar 

  17. R. Axelrod and W. D. Hamilton, Science 211, 1390 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  18. C. Hauert and M. Doebeli, Nature 428, 643 (2004).

    Article  ADS  Google Scholar 

  19. H. Qi, S. Ma, N. Jian and G. Wang, J. Theor. Biol. 368, 1 (2015).

    Article  Google Scholar 

  20. G. Szabó and C. Töke, Phys. Rev. E 58, 69 (1998).

    Article  ADS  Google Scholar 

  21. A. Traulsen, M. Nowak and J. Pacheco, Phys. Rev. E 74, 011909 (2006).

    Article  ADS  Google Scholar 

  22. T. Sasaki, Å. Brännström, U. Dieckmann and K. Sigmund, Proc. Natl. Acad. Sci. USA 109, 1165 (2012).

    Article  ADS  Google Scholar 

  23. J. M. Smith and G. R. Price, Nature 246, 15 (1973).

    Article  ADS  Google Scholar 

  24. F. C. Santos and J. M. Pacheco, J. Evol. Biol. 19, 726 (2006).

    Article  Google Scholar 

  25. F. C. Santos, J. F. Rodrigues and J. M. Pacheco, Proc. R. Soc. B 273, 51 (2006).

    Article  Google Scholar 

  26. Z-J. Xu, Y. Le and L-Z. Zhang, Phys. Rev. E 89, 042142 (2014).

    Article  ADS  Google Scholar 

  27. F. L. Pinheiro, M. D. Santos, F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 112, 098702 (2014).

    Article  ADS  Google Scholar 

  28. S. Lee, J Korean Phys. Soc. 67, 1703 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China under Grant No. 4187 4113, the National Natural Science Foundation of China under Grant No. 11604243, the Natural Science Foundation of Tianjin, Project No. 16JCQNJC01600, and the Scientific Research Project of Tianjin Municipal Education Commission under Grant No. 2017KJ239.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaojin Xu or Lianzhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Xu, Z. & Zhang, L. Heterogeneity of Networks Promotes Cooperation in the Prisoner’s Dilemma and the Snowdrift Game. J. Korean Phys. Soc. 74, 831–837 (2019). https://doi.org/10.3938/jkps.74.831

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.831

Keywords

Navigation