Skip to main content

Functionalized Bonding Materials and Interfaces for Heterogeneously Layer-Stacked Applications

Abstract

Recently, heterogeneous integration has become more important in enhancing device performance and creating new functions. For this purpose, wafer bonding can provide a straightforward method to integrate different materials, regardless of lattice mismatch. Here, we review recent application spaces using low-temperature wafer bonding by classifying wafer bonding into direct bonding, oxide bonding, and metal bonding. We show that bonding materials and interfaces have an important role in achieving high-performance semiconductor devices.

This is a preview of subscription content, access via your institution.

References

  1. A. Spott et al., Opt. Lett. 40, 1480 (2015).

    ADS  Article  Google Scholar 

  2. D. Kang et al., ACS Phot. 3, 912 (2016).

    Article  Google Scholar 

  3. M. Takenaka et al., IEEE J. of Selected Topics in Quantum Electronics 23, 8200713 (2017).

    Article  Google Scholar 

  4. D-M. Geum et al., J. Korean Phys. Soc. 70, 693 (2017).

    ADS  Article  Google Scholar 

  5. T-H. Kil et al., Nano Energy 37, 242 (2017).

    Article  Google Scholar 

  6. C-M. Kang et al., Opt. Exp. 24, 2489 (2017).

    ADS  Article  Google Scholar 

  7. C-M. Kang et al., Sci. Rep. 7, 1 (2017).

    ADS  Article  Google Scholar 

  8. C-M. Kang et al., SID Symp. Dig. 49, 604 (2018).

    Article  Google Scholar 

  9. K. N. Noh et al., Small 14, 1702479 (2018).

    Article  Google Scholar 

  10. S. Yadav et al., Proc. IEDM Tech. Dig., 421 (2017).

    Google Scholar 

  11. D. Lei et al., IEEE Trans. Elec. Dev. 65, 3754 (2018).

    ADS  Article  Google Scholar 

  12. S. Menezo et al., Proc. Opt. Fib. Conf., Tu3K.4 (2018).

    Google Scholar 

  13. J-H. Han et al., Nat. Phot. 11, 486 (2017).

    Article  Google Scholar 

  14. S-H. Kim et al., IEEE J. Elec. Dev. Soc. 6, 579 (2018).

    Article  Google Scholar 

  15. A. Kumar et al., Opt. Exp. 25, 31853 (2017).

    ADS  Article  Google Scholar 

  16. Y. Du et al., Proc. IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (Rohnert Park, USA, 5th Oct., 2015), p. 1.

    Google Scholar 

  17. P. Batude et al., Proc. VLSI Sympo., T48 (2015).

    Google Scholar 

  18. V. Deshipande et al., Proc. IEDM Tech. Dig., 209 (2015).

    Google Scholar 

  19. S-H. Kim et al., Curr. Appl. Lett. 15, 40 (2015).

    ADS  Article  Google Scholar 

  20. J. Kwoen et al., Opt. Exp. 26, 11568 (2018).

    ADS  Article  Google Scholar 

  21. T. Soga et al., J. Appl. Phys. 87, 2285 (2000).

    ADS  Article  Google Scholar 

  22. T. Milakovich et al., Proc. IEEE PVSC (2015).

    Google Scholar 

  23. G. Ju et al., Thin Solid Films 649, 38 (2018).

    ADS  Article  Google Scholar 

  24. D. Li et al., Appl. Phys. Lett. 109, 243503 (2016).

    ADS  Article  Google Scholar 

  25. J. G. Fiorenza et al., ECS Trans. 33, 963 (2010).

    Article  Google Scholar 

  26. M. M. R. Howlader, S. Suehara and T. Suda, Sensors and Actuators A 127, 31 (2006).

    Article  Google Scholar 

  27. H. Takagi et al., Sensors and Actuators A 70, 164 (1998).

    Article  Google Scholar 

  28. H. Takagi et al., ECS Trans. 64, 69 (2014).

    Article  Google Scholar 

  29. F. Mu et al., ECS Trans. 75, 77 (2016).

    Article  Google Scholar 

  30. M. Yokoyama et al., Semi. Sci. Tech. 28, 094009 (2013).

    ADS  Article  Google Scholar 

  31. K. Tanabe, K. Watanabe and Y. Arakawa, Sci. Rep. 2, 349 (2012).

    ADS  Article  Google Scholar 

  32. K. Tanabe, A. F. Morral and Harry A. Atwater, Appl. Phys. Lett. 89, 102106 (2006).

    ADS  Article  Google Scholar 

  33. A. C. Tamboli et al., Appl. Phys. Lett. 106, 263904 (2015).

    ADS  Article  Google Scholar 

  34. N. Shigekawa et al., Jpn. J. Appl. Phys. 53, 04ER05 (2014).

    Article  Google Scholar 

  35. S-H. Kim et al., Solar Energy Materials & Solar cells 141, 372 (2015).

    Article  Google Scholar 

  36. S-H. Kim et al., IEEE Elec. Dev. Lett. 36, 451 (2015).

    ADS  Article  Google Scholar 

  37. S-H. Kim et al., Appl. Phys. Exp. 5, 076501 (2012).

    ADS  Article  Google Scholar 

  38. K. Takai et al., Nano Lett. 12, 2060 (2012).

    ADS  Article  Google Scholar 

  39. J. Nah et al., Nano Lett. 12, 3592 (2012).

    ADS  Article  Google Scholar 

  40. S-H. Kim et al., IEEE Trans. Nanotech. 12, 621 (2013).

    ADS  Article  Google Scholar 

  41. S-H. Kim et al., IEEE Trans. Elec. Dev. 60, 2512 (2013).

    ADS  Article  Google Scholar 

  42. S-H. Kim et al., IEEE Trans. Elec. Dev. 61, 1354 (2014).

    ADS  Article  Google Scholar 

  43. S-H. Kim et al., Appl. Phys. Lett. 105, 243504 (2014).

    Article  Google Scholar 

  44. H. Schmid et al., Appl. Phys. Lett. 106, 233101 (2015).

    ADS  Article  Google Scholar 

  45. D. Cutaia et al., IEEE J. Elec. Dev. Soc. 3, 176 (2015).

    Article  Google Scholar 

  46. S-H. Kim et al., IEEE Elec. Dev. Lett. 37, 1261 (2016).

    ADS  Article  Google Scholar 

  47. V. Djara et al., IEEE Elec. Dev. Lett. 37, 169 (2016).

    ADS  Article  Google Scholar 

  48. S-K. Kim et al., IEEE Trans. Elec. Dev. 64, 3601 (2017).

    ADS  Article  Google Scholar 

  49. J-P, Shim et al., IEEE Trans. Elec. Dev. 65, 1253 (2018).

    ADS  Article  Google Scholar 

  50. J-P, Shim et al., APL Mater. 6, 016103 (2018).

    ADS  Article  Google Scholar 

  51. S-K. Kim et al., IEEE Trans. Elec. Dev. 65, 1862 (2018).

    ADS  Article  Google Scholar 

  52. J. Kang et al., Opt. Exp. 24, 11855 (2016).

    ADS  Article  Google Scholar 

  53. W. Li et al., Appl. Phys. Lett. 109, 241101 (2016).

    ADS  Article  Google Scholar 

  54. U. Younis et al., Opt. Exp. 24, 11987 (2016).

    ADS  Article  Google Scholar 

  55. G. Z. Mashanovich et al., Opt. Mater. Exp. 8, 2276 (2018).

    ADS  Article  Google Scholar 

  56. S-H. Kim et al., Opt. Mater. Exp. 8, 440 (2018).

    ADS  Article  Google Scholar 

  57. M-S. Park et al., Opt. Exp. 23, 26888 (2015).

    ADS  Article  Google Scholar 

  58. D-M. Geum et al., Sci. Rep. 6, 20610 (2016).

    ADS  Article  Google Scholar 

  59. S-H. Kim et al., Appl. Phys. Lett. 110, 153505 (2017).

    ADS  Article  Google Scholar 

  60. D. Fan, K. Lee and S. R. Forrest, ACS Phot. 3, 670 (2016).

    Article  Google Scholar 

  61. J. Yoon et al., Nature 465, 329 (2010).

    ADS  Article  Google Scholar 

  62. Z. Xia et al., Sci. Adv. 3, e1602783 (2017).

    ADS  Article  Google Scholar 

  63. M. Kim et al., Opt. Exp. 24, 16894 (2016).

    ADS  Article  Google Scholar 

  64. D. Um et al., ACS Appl. Maer. Interfaces 8, 26105 (2016).

    Article  Google Scholar 

  65. H-S. Kim et al., Opt. Exp. 25, 17562 (2017).

    ADS  Article  Google Scholar 

  66. T. Hiraki et al., Nat. Phot. 11, 482 (2017).

    Article  Google Scholar 

  67. Q. Li et al., Proc. Opt. Fib. Conf., Th3C.5 (2018).

    Google Scholar 

  68. J-H. Han et al., Proc. Group Four Photonics (Cancun, Mexico, 29th Aug., 2018), p. 37.

    Google Scholar 

  69. J-H. Han et al., Proc. Group Four Photonics (Cancun, Mexico, 9th Aug., 2018), p. 39.

    Google Scholar 

  70. S. L. Chua et al., IEEE Int. Conf. on Elec. Dev. and Solid-State Cir. (Singapore, 1st June, 2015), p. 134.

    Google Scholar 

  71. T. Suni et al., J. Electrochem. Soc. 149, G348 (2002).

    Article  Google Scholar 

  72. J. Liang et al., Jpn. J. Appl. Phys. 54, 030211 (2015).

    ADS  Article  Google Scholar 

  73. T. Hara et al., Jpn. J. Appl. Phys. 57, 08RD05 (2018).

    Article  Google Scholar 

  74. N. Shigekawa et al., IEEE J. Photovoltaics 8, 879 (2018).

    Google Scholar 

  75. S-H. Kim et al., IEEE Trans. Elec. Dev. 60, 2512 (2013).

    ADS  Article  Google Scholar 

  76. S-H. Kim et al., IEEE Trans. Elec. Dev. 61, 1354 (2014).

    ADS  Article  Google Scholar 

  77. J. Shim et al., IEEE Trans. Elec. Dev. 65, 1253 (2018).

    ADS  Article  Google Scholar 

  78. M. Kim et al., Thin Solid Films 557, 298 (2014).

    ADS  Article  Google Scholar 

  79. W-K. Kim et al., IEEE Trans. Elec. Dev. 61, 3379 (2014).

    ADS  Article  Google Scholar 

  80. W-K. Kim et al., Proc. VLSI Dig., T124 (2017).

    Google Scholar 

  81. A. Abedin et al., IEEE J. Elec. Dev. Soc. 6, 588 (2018).

    Article  Google Scholar 

  82. X. Yu et al., Proc. IEDM Tech. Dig., 20 (2015).

    Google Scholar 

  83. S-H. Kim et al., IEEE Trans. Nano. 12, 621 (2013).

    Article  Google Scholar 

  84. S-H. Shin et al., Proc. IEDM Tech. Dig., 404 (2016).

    Google Scholar 

  85. A. D. Es-Sakhi and M. H. Chowdhury, Microelectronics J. 46, 981 (2015).

    Article  Google Scholar 

  86. J-M. Park et al., IEEE Elec. Dev. Lett. 38, 564 (2017).

    ADS  Article  Google Scholar 

  87. S-K. Kim et al., Appl. Phys. Lett. 110, 043501 (2017).

    ADS  Article  Google Scholar 

  88. S-K. Km et al., Proc. IEDM Tech. Dig., 616 (2016).

    Google Scholar 

  89. A. Gutierrez-Arroyo et al., Opt. Exp. 24, 23109 (2016).

    ADS  Article  Google Scholar 

  90. B. Schwarz et al., Nat. Comm. 5, 4085 (2014).

    Article  Google Scholar 

  91. M. Nedeljkovic et al., IEEE Phot. Tech. Lett. 27, 1040 (2015).

    ADS  Article  Google Scholar 

  92. W. Li et al., Appl. Phys. Lett. 109, 241101 (2016).

    ADS  Article  Google Scholar 

  93. J. Fujikata et al., Jpn. J. Appl. Phys. 55, 042202 (2016).

    ADS  Article  Google Scholar 

  94. J. Fujikata et al., Jpn. J. Appl. Phys. 55, 04EC01 (2016).

    Article  Google Scholar 

  95. P. Bidenko et al., IEEE J. Elec. Dev. Soc. 6, 910 (2018).

    Article  Google Scholar 

  96. A. K. Panigrahy and K-N. Chen, J. Electron. Packag. 140, 010810 (2018).

    Article  Google Scholar 

  97. C. Wang et al., J. Nanosci. Nanotechnol. 16, 8046 (2016).

    Article  Google Scholar 

  98. A. W. Walker et al., IEEE J. Photovol. 5, 1636 (2015).

    Article  Google Scholar 

  99. G. Lush and M. Lundstrom, Solar Cells 30, 337 (1991).

    Article  Google Scholar 

  100. B. M. Kayes et al., IEEE Photovoltaic Specialists Conference (Washington, USA, 19th June, 2011), p. 4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyeon Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Han, JH., Choi, W.J. et al. Functionalized Bonding Materials and Interfaces for Heterogeneously Layer-Stacked Applications. J. Korean Phys. Soc. 74, 82–87 (2019). https://doi.org/10.3938/jkps.74.82

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.82

Keywords

  • Wafer bonding
  • Heterogeneous integration
  • Bonding interface
  • Monolithic 3D integration