Journal of the Korean Physical Society

, Volume 74, Issue 7, pp 684–694 | Cite as

Effect of Cr3+ Substitution on the Structural, Electrical and Magnetic Properties of Ni0.7Zn0.2Cu0.1Fe2−xCrxO4 Ferrites

  • G. Satyanarayana
  • G. Nageswara RaoEmail author
  • K. Vijaya BabuEmail author
  • G. V. Santosh Kumar
  • G. Dinesh Reddy


In this work, Ni0.7Zn0.2Cu0.1Fe2−xCrxO4 (x = 0.02, 0.04, 0.06, 0.08 and 0.1) ferrites were synthesized by using the solid state reaction method and how relevant properties of the samples were modified accordingly. The structural, morphological, magnetic and electrical features of the ferrites were evaluated by using X-ray diffraction, scanning electron microscopy, Fourier transmission infrared (FTIR) spectra, vibrating sample magnetometry, electron spin resonance and network analyser. The lattice constant decreases with increasing chromium concentration and the decrease in the lattice constant is attributed to the ionic radius of chromium being smaller than that of iron. The distribution of metal cations in the spinel structure was estimated from the X-ray diffraction data and showed that along with Ni2+ ions, most of the Zn2+ and the Cu2+ ions additionally occupied the octahedral [B] sites. The FTIR spectra revealed two prominent frequency bands in the wave number range 400–600 cm−1 which confirm the cubic spinel structure. The magnetic properties, such as the initial permeability, saturation magnetization and coercivity, were investigated at room temperature. The frequency-dependent dielectric constant was observed to decrease with increasing chromium concentration. This behavior was using Koops phenomenological theory.


Ni-Zn-Cu ferrite Cation distribution XRD Magnetic properties ESR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Department of Science and Technology (DST), Government of India, New Delhi, for providing financial support through (DST)-Promotion of University Research and Scientific Excellence (PURSE) Programme.


  1. [1]
    E. Schloemann, J. Magn. Magn. Mater. 209, 15 (2000).ADSCrossRefGoogle Scholar
  2. [2]
    S. Sharma, K. Verma, U. Chaubey, V. Singh and B. R. Mehta, Mater. Sci. Eng. B 167, 187 (2010).CrossRefGoogle Scholar
  3. [3]
    D.R. Patil and B.K. Chougule, Mater. Chem.Phys. 117, 35 (2009).CrossRefGoogle Scholar
  4. [4]
    R. V. Mangalaraja, S. A. Kumar, P. Manohar and F. D. Gnanam, J. Magn. Magn. Mater. 253, 56 (2002).ADSCrossRefGoogle Scholar
  5. [5]
    L-Z. Li, X-X. Zhong, R. Wang and X-Q. Tu, J. Magn. Magn. Mater. 435, 58 (2017).ADSCrossRefGoogle Scholar
  6. [6]
    F. Li, J. J. Liu, D. G. Evans and X. Duan, Chem. Mater. 16, 1597 (2004).CrossRefGoogle Scholar
  7. [7]
    A. V. Knyazev et al.., J. Magn. Magn. Mater. 435, 9 (2017).ADSCrossRefGoogle Scholar
  8. [8]
    S. T. Alone, S. E. Shirsath, R. H. Kadam and K. M. Jadhav, J. Alloys Compd. 509, 5055 (2011).CrossRefGoogle Scholar
  9. [9]
    N. Rezlescu, L. Rezlescu, P. D. Popa and E. Rezlescu, J. Magn. Magn. Mater. 215–216, 194 (2000).CrossRefGoogle Scholar
  10. [10]
    S. Dey et al., J.Appl.Phys. 114, 093901 (2013).ADSCrossRefGoogle Scholar
  11. [11]
    JH. Jean, CH. Lee and WS. Kou, J. Am. Ceram. Soc. 82, 343 (1999).CrossRefGoogle Scholar
  12. [12]
    W. A. Bayoumy and M. A. Gabal, J. Alloys Compd. 506, 205 (2010).CrossRefGoogle Scholar
  13. [13]
    A. I. Borhan, V. Hulea, A. R. Iordan and M. N. Palamaru, Polyhedron 70, 110 (2014).CrossRefGoogle Scholar
  14. [14]
    H. Su, H. Zhang, X. Tang, Z. Zhong and Y. Jing, Mater. Sci. Eng. B 162, 22 (2009).CrossRefGoogle Scholar
  15. [15]
    W-C. Hsu, S. C. Chen, P. C. Kuo, C. T. Lie and W. S. Tsai, Mater. Sci. Eng. B 111, 142 (2004).CrossRefGoogle Scholar
  16. [16]
    X-M. Liu and W-L. Gao, Mater. Manuf. Processes 27, 905 (2012).CrossRefGoogle Scholar
  17. [17]
    P. P. Hankare, K. R. Sanadi, K. M. Garadkar, D. R. Patil and I. S. Mulla, J. Alloys Compd. 553, 383 (2013).CrossRefGoogle Scholar
  18. [18]
    S. Singhal, S. Jauhar, J. Singh, K. Chandra and S. Bansal, J. Mol. Struct. 1012, 182 (2012).ADSCrossRefGoogle Scholar
  19. [19]
    A. R. Das, V. S. Ananthan and D. C. Khan, J. Appl. Phys. 57, 4189 (1985).ADSCrossRefGoogle Scholar
  20. [20]
    M. Hashim et al., J. Alloys Compd. 549, 348 (2013).CrossRefGoogle Scholar
  21. [21]
    M. Hashim et al., Ceram.Int. 39, 1807 (2013).CrossRefGoogle Scholar
  22. [22]
    M. Y. Lodhi et al. Curr. Appl. Phys. 14, 716 (2014).ADSCrossRefGoogle Scholar
  23. [23]
    P. B. Belavi, G. N. Chavan, L. R. Naik, R. Somashekar and R. K. Kotnala, Mater. Chem. Phys. 132, 138 (2012).CrossRefGoogle Scholar
  24. [24]
    R. D. Waldron, Phys. Rev. 9, 1727 (1955).ADSCrossRefGoogle Scholar
  25. [25]
    R. Ali et al., J. Alloys Compd. 584, 363 (2014).CrossRefGoogle Scholar
  26. [26]
    P. Priyadharsini, A. Pradeep, P. S. Rao and G. Chandrasekaran, Mater. Chem. Phys. 116, 207 (2009).CrossRefGoogle Scholar
  27. [27]
    S. Singhal and K. Chandra, J. Solid State Chem. 180, 296 (2007).ADSCrossRefGoogle Scholar
  28. [28]
    M. N. Akhtar et al., J. Magn. Magn. Mater. 421, 260 (2017).ADSCrossRefGoogle Scholar
  29. [29]
    X. Wu, W. Wu, L. Qin, K. Wang and S. Ou et al, J. Magn. Magn. Mater. 379, 232 (2015).ADSCrossRefGoogle Scholar
  30. [30]
    C. G. Koops, Phys. Rev. 83, 121 (1951).ADSCrossRefGoogle Scholar
  31. [31]
    N. Rezlescu and E. Rezlescu, Phys. Status Solidi A 23, 575 (1974).ADSCrossRefGoogle Scholar
  32. [32]
    A. S. Fawzi, A. D. Sheikh and V. L. Mathe, J. Alloys Compd. 502, 231 (2010).CrossRefGoogle Scholar
  33. [33]
    R. Peelamedu, C. Grimes, D. Agrawal, R. Roy and P. Yadoji, J.Mater.Res. 18, 2292 (2003).ADSCrossRefGoogle Scholar
  34. [34]
    T. J. Shinde, A. B. Gadkari and P. N. Vasambekar, Mater. Chem. Phys. 111, 87 (2008).CrossRefGoogle Scholar
  35. [35]
    K. Huang et al., High Temp. Mater. Proc. 35, 531 (2016).CrossRefGoogle Scholar
  36. [36]
    L. L. Lang et al., J.Appl.Phys. 116, 123901 (2014).ADSCrossRefGoogle Scholar
  37. [37]
    A. K. Singh, T. C. Goel and R. G. Mendiratta, J. Magn. Magn. Mater. 281, 276 (2004).ADSCrossRefGoogle Scholar
  38. [38]
    K. Sun et al., J. Magn. Magn. Mater. 320, 3352 (2008).ADSCrossRefGoogle Scholar
  39. [39]
    W. Zhang, X. Zuo, D. Zhang, C. Wu and S. R. P. Silva, Nano Tech. 27, 245707 (2016).ADSGoogle Scholar
  40. [40]
    R. H. Kadam, A. Karim, A. B. Kadam, A. S. Gaikwad and S. E. Shirsath, Int. Nano Lett. 2, 28 (2012).CrossRefGoogle Scholar
  41. [41]
    P. S. Aghav et al., Physica B: Condens. Matter 406, 4350 (2011).ADSCrossRefGoogle Scholar
  42. [42]
    Z. H. Khan, M. M. Rehman, S. S. Sikder, M. A. Hakim and D. K. Saha, J. Alloys Compd. 548, 208 (2013).CrossRefGoogle Scholar
  43. [43]
    J. S. Ghodaken, T. J. Shinde, R. P. Patil, S. B. Patil and S. S. Suryavanshi, J. Magn. Magn. Mater. 378, 436 (2015).ADSCrossRefGoogle Scholar
  44. [44]
    A. P. Guimaraes and I. S. Oliveira, Magnetism and Magnetic Resonance in Solids (John Wiley & Sons, New Jersey, 1998), p. 298.Google Scholar
  45. [45]
    K. O. Low and F. R. Sale, J. Magn. Magn. Mater. 246, 30 (2002).ADSCrossRefGoogle Scholar
  46. [46]
    M. Kaiser, J. Phys. Chem. Solids 71, 1451 (2010).ADSCrossRefGoogle Scholar
  47. [47]
    S. A. V. Prasad et al., Ceram. Int. 44, 10517 (2018).CrossRefGoogle Scholar
  48. [48]
    K. V. Babu, B. Sailaja, K. Jalaiah, P. T. Shibeshi and M. Ravi, Physica B: Condens. Matter 534, 83 (2018).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Advanced Analytical LaboratoryAndhra UniversityVisakhapatnamIndia
  2. 2.School of Chemistry, AU College of Science & TechnologyAndhra UniversityVisakhapatnamIndia

Personalised recommendations