Skip to main content
Log in

Strangeness in Neutron Star Cooling

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study the thermal evolution of neutron stars in the presence of hyperons or kaons in the core. Our results indicate that the nucleon and the hyperon direct Urca processes play crucial roles for macroscopic cooling behavior of neutron stars. The presence of hyperons drives fast cooling mechanisms in two ways: 1) it allows the hyperon direct Urca prior to the nucleon direct Urca, and 2) it makes the nucleon direct Urca more feasible by reducing the neutron Fermi momentum. All of the equations of state (EOSs) used in this work satisfy the maximum mass constraints and the allowed areas of mass and radii of neutron stars. We found that the neutron star EOS with hyperons can still be consistent with both mass and temperature observations if the original neutron star’s EOS without hyperons is stiff enough. On the other hand, we found that the neutron star’s EOS with kaons can be consistent only with mass observations, but can hardly explain the cooling behavior if we take into account the statistical distribution of observed neutron star masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Lattimer and M. Prakash, Phys. Rep. 621, 127 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  2. J. M. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485 (2012).

    Article  ADS  Google Scholar 

  3. Y. Lim, K. Kwak, C. H. Hyun and C.-H. Lee, Phys. Rev. C 89, 055804 (2014).

    Article  ADS  Google Scholar 

  4. Y. Lim, C. H. Hyun, K. Kwak and C.-H. Lee, Int. J. Mod. Phys. E 24, 1550100 (2015).

    Article  ADS  Google Scholar 

  5. Y. Lim, C. H. Hyun and C.-H. Lee, Int. J. Mod. Phys. E 26, 1750015 (2017).

    Article  ADS  Google Scholar 

  6. E. Chabanat, P. Bonche, P. Haensel, J. Meyer and F. Schaeffer, Nucl. Phys. A 635, 231 (1998).

    Article  ADS  Google Scholar 

  7. P-G. Reinhard and H. Flocard, Nucl. Phys. A 584, 467 (1995).

    Article  ADS  Google Scholar 

  8. N. van Giai and H. Sagawa, Phys. Lett. B 106, 379 (1981).

    Article  ADS  Google Scholar 

  9. J. Haidenbauer, U.-G. Meißner, N. Kaiser and W. Weise, Eur. Phys. J. A 53, 121 (2017).

    Article  ADS  Google Scholar 

  10. Y. Lim, C.-H. Lee and Y. Oh, Phys. Rev. D 97, 023010 (2018).

    Article  ADS  Google Scholar 

  11. N. Guleria, S. K. Dhiman and R. Shyam, Nucl. Phys. A 886, 71 (2012).

    Article  ADS  Google Scholar 

  12. Y. Yamamoto, H. Bando and J. Zofka, Prog. Theor. Phys. 80, 757 (1988).

    Article  ADS  Google Scholar 

  13. D. E. Lanskoy, Phys. Rev. C 58, 3351 (1998).

    Article  ADS  Google Scholar 

  14. F. Minato and S. Chiba, Nucl. Phys. A 856, 55 (2011).

    Article  ADS  Google Scholar 

  15. K. A. Maslov, E. E. Kolomeitsev and D. N. Voskresensky, Phys. Lett. B 748, 369 (2015).

    Article  ADS  Google Scholar 

  16. M. Prakash, M. Prakash, J. M. Lattimer and C. J. Pethick, Astrophys. J. 390, L77 (1992).

    Google Scholar 

  17. D. B. Kaplan and A. E. Nelson, Phys. Lett. B 175, 57 (1986).

    Article  ADS  Google Scholar 

  18. P. Demorest, T. Pennucci, S. Ransom, M. Roberts and J. Hessels, Nature 467, 1081 (2010).

    Article  ADS  Google Scholar 

  19. J. Antoniadis et al., Science 340, 448 (2013).

    Article  ADS  Google Scholar 

  20. G. E. Brown, K. Kubodera, D. Page and P. Pizzochero, Phys. Rev. D 37, 2042 (1988).

    Article  ADS  Google Scholar 

  21. V. Thorsson, M. Prakash, T. Tatsumi and C. J. Pethick, Phys. Rev. D 52, 3739 (1995).

    Article  ADS  Google Scholar 

  22. P. Haensel and A. J. Jerzak, Astron. Astrophys. 179, 127 (1987).

    ADS  Google Scholar 

  23. D. Page and J. H. Applegate, Astrophys. J 394, L17 (1992).

    Google Scholar 

  24. O. Y. Gnedin, D. G. Yakovlev and A. Y. Potekhin, Mon. Not. R. Astron. Soc. 324, 725 (2001).

    Article  ADS  Google Scholar 

  25. E. H. Gudmundsson, C. J. Pethick and R. I. Epstein, Astrophys. J. 272, 286 (1983).

    Article  ADS  Google Scholar 

  26. C. O. Heinke and W. C. G. Ho, Astrophys. J. 719, L167 (2010).

    Google Scholar 

  27. S. Safi-Harb and H. S. Kumar, Astrophys. J. 684, 532 (2008).

    Article  ADS  Google Scholar 

  28. V. E. Zavlin, J. Trümper and G. G. Pavlov, Astrophys. J. 525, 959 (1999).

    Article  ADS  Google Scholar 

  29. V. E. Zavlin, G. G. Pavlov and D. Sanwal, Astrophys. J. 606, 444 (2004).

    Article  ADS  Google Scholar 

  30. V. E. Zavlin, Astrophys. J. 665, L143 (2007).

    Google Scholar 

  31. G. G. Pavlov, V. E. Zavlin, D. Sanwal and J. Trümper, Astrophys. J. 569, L95 (2001).

    Google Scholar 

  32. G. G. Pavlov, V. E. Zavlin, D. Sanwal, V. Burwitz and G. P. Garmire, Astrophys. J. 552, L129 (2001).

    Google Scholar 

  33. K. E. McGowan et al., Astrophys. J. 600, 343 (2004).

    Article  ADS  Google Scholar 

  34. V. E. Zavlin and G. G. Pavlov, Mem. Soc. Astron. Ital. 75, 485 (2004).

    Google Scholar 

  35. V. E. Zavlin, arXiv:astro-ph/0702426 (2007).

    Google Scholar 

  36. A. Possenti, S. Mereghetti and M. Colpi, Astron. Astrophys. 313, 565 (1996).

    ADS  Google Scholar 

  37. J. P. Halpern and F. Y.-H. Wang, Astrophys. J. 477, 905 (1997).

    Article  ADS  Google Scholar 

  38. W. C. G. Ho et al., Mon. Notice of Royal Astron. Soc. 375, 821 (2007).

    Article  ADS  Google Scholar 

  39. G. G. Pavlov and V. E. Zavlin, arXiv:astro-ph/0305435 (2003).

    Google Scholar 

  40. C. Motch, V. E. Zavlin and F. Haberl, Astron. Astrophys. 408, 323 (2003).

    Article  ADS  Google Scholar 

  41. P. Slane, D. J. Helfand, E. van der Swaluw and S. S. Murray, Astrophys. J. 616, 403 (2004).

    Article  ADS  Google Scholar 

  42. M. C. Weisskopf et al., Astrophys. J. 601, 1050 (2004).

    Article  ADS  Google Scholar 

  43. J. P. Halpern, E. V. Gotthelf, F. Camilo, D. J. Helfand and S. M. Ransom, Astrophys. J. 612, 398 (2004).

    Article  ADS  Google Scholar 

  44. J. M. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485 (2012).

    Article  ADS  Google Scholar 

  45. A. Y. Potekhin, G. Chabrier and D. G. Yakovlev, Astron. Astrophys. 323, 415 (1997).

    ADS  Google Scholar 

  46. M. Dutra, O. Louren¸co, J. S. Sá Martins, A. Delno and J. R. Stone et al., Phys. Rev. C 85, 035201 (2012).

    Article  ADS  Google Scholar 

  47. J. M. Lattimer, Astrophysics and Cosmology: Proceedings of the 26th Solvay Conference on Physics, edited by R. Blandford, D. Gross and A. Sevrin (World Scientific, Singapore, 2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeunhwan Lim, Chang Ho Hyun or Chang-Hwan Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Y., Hyun, C.H. & Lee, CH. Strangeness in Neutron Star Cooling. J. Korean Phys. Soc. 74, 547–554 (2019). https://doi.org/10.3938/jkps.74.547

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.547

Keywords

Navigation