Skip to main content
Log in

Ab initio Study on Adsorption of Transition-Metal Phthalocyanine on a Quasi-One-Dimensional Metallic Surface, In/Si(111)-4×1

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Transition-metal containing metal phthalocyanine (MPc) molecules are representative molecular magnets and their adsorption on two-dimensional metallic surfaces has been extensively studied. In/Si(111)-4×1 is a prototypical quasi-one-dimensional metallic surface made up of alternating In nanowires and Si Seiwatz chains. Here, we investigated the adsorption of MPc (M = Mn, Fe, Co) on In/Si(111)-4×1 using density functional theory calculations. We found that there are three locally stable adsorption sites of MPc, two on In nanowires and one on Seiwatz chains. Also, the stable orientation of MPc is different depending on adsorption sites. Among three MPc’s, MnPc are found to carry a finite magnetic moment of 1.6 ~ 2.1 μB in its three almost-degenerate adsorption structures. The interaction between MPc molecules and the In/Si(111)-4×1 surface turns out to occur via the charge transfer, and the charge transfer channel varies for different adsorption sites: Transition-metal 3dz2 and two N 2pz orbitals on In nanowires vs. four N 2pz orbitals on Seiwatz chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Hung and C. H. Chen, Mater. Sci. Eng. 39, 143 (2002).

    Article  Google Scholar 

  2. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).

    Article  ADS  Google Scholar 

  3. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature 395, 151 (1998).

    Article  ADS  Google Scholar 

  4. M. Xu, M. Sakai and K. Kudo, Adv. Mater. 19, 371 (2007).

    Article  Google Scholar 

  5. J. Xue and S. R. Forrest, Appl. Phys. Lett. 79, 3714 (2001).

    Article  ADS  Google Scholar 

  6. Z-X. Xu, V. A. L. Roy, Z-T. Liu and C. S. Lee, Appl. Phys. Lett. 97, 163301 (2010).

    Article  ADS  Google Scholar 

  7. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).

    Article  ADS  Google Scholar 

  8. D. Meissner and J. Rostalski, Synth. Metals 121, 1551 (2001).

    Article  Google Scholar 

  9. P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).

    Article  ADS  Google Scholar 

  10. M. Rohlfing, R. Temirov and F. S. Tautz, Phys. Rev. B 76, 115421 (2007).

    Article  ADS  Google Scholar 

  11. S. M. Barlow and R. Raval, Surf. Sci. Rep. 50, 201 (2003).

    Article  ADS  Google Scholar 

  12. S. D. Feyter and F. C. D. Schryver, Chem. Soc. Rev. 32, 139 (2003).

    Article  Google Scholar 

  13. J. V. Barth, G. Costantini and K. Kern, Nature (London) 437, 671 (2005).

    Article  ADS  Google Scholar 

  14. J. V. Barth, Surf. Sci. 603, 1533 (2009).

    Article  ADS  Google Scholar 

  15. S. Fatayer, R. G. A. Veiga, M. J. Prieto, E. Perim, R. Landers, R. H. Miwa and A. D. Siervo, Phys. Chem. Chem. Phys. 17, 18344 (2015).

    Article  Google Scholar 

  16. S. Heutz, C. Mitra, W. Wu, A. J. Fisher, A. Kerridge, M. Stoneham, T. H. Harker, J. Gardener, H-H. Tseng, T. S. Jones, C. Renner and G. Aeppli, Adv. Mater. 19, 3618 (2007).

    Article  Google Scholar 

  17. S. R. Wagner, R. R. Lunt and P. Zhang, Phys. Rev. Lett. 110, 086107 (2013).

    Article  ADS  Google Scholar 

  18. A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, B. Wang, X. Xiao, J. Yang, J. G. Hou and Q. Zhu, Science 309, 1542 (2005).

    Article  ADS  Google Scholar 

  19. L. Gao, W. Ji, Y. B. Hu, Z. H. Cheng, Z. T. Deng, Q. Liu, N. Jiang, X. Lin, W. Guo, S. X. Du, W. A. Hofer, X. C. Xie and H-J. Gao, Phys. Rev. Lett. 99, 106402 (2007).

    Article  ADS  Google Scholar 

  20. S. Stepanow, A. Mugarza, G. Ceballos, P. Moras, J. C. Cezar, C. Carbone and P. Gambardella, Phys. Rev. B 82, 014405 (2010).

    Article  ADS  Google Scholar 

  21. J. Schaffert, M. C. Cottin, A. Sonntag, H. Karacuban, C. A. Bobisch, N. Lorente, J-P. Gauyacq and R. Moller, Nat. Mater. 12, 223 (2013).

    Article  ADS  Google Scholar 

  22. J. C. Swarbrick, J. Ma, J. A. Theobald, N. S. Oxtoby, J. N. O’Shea, N. R. Champness and P. H. Beton, J. Phys. Chem. B 109, 12167 (2005).

    Article  Google Scholar 

  23. J. B. Gustafsson, H. M. Zhang, E. Moons and L. S. O. Johansson, Phys. Rev. B 75, 155413 (2007).

    Article  ADS  Google Scholar 

  24. N. Nicoara, Z. Wei and J. M. Gómez-Rodriguez, J. Phys. Chem. C 113, 14935 (2009).

    Article  Google Scholar 

  25. D. Shin, Z. Wei, H. Shim and G. Lee, Appl. Surf. Sci. 372, 87 (2016).

    Article  ADS  Google Scholar 

  26. Z. Wei, H. Lim and G. Lee, Appl. Phys. Lett. 98, 071912 (2011).

    Article  ADS  Google Scholar 

  27. H. W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J.Schaefer, C. M. Lee, S. D. Kevan, T. Ohta, T. Nagao and S. Hasegawa, Phys. Rev. Lett. 82, 4898 (1999).

    Article  ADS  Google Scholar 

  28. T. Kanagawa, R. Hobara, I. Matsuda, T. Tanikawa, A. Natori and S. Hasegawa, Phys. Rev. Lett. 91, 036805 (2003).

    Article  ADS  Google Scholar 

  29. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Google Scholar 

  30. W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  31. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  32. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  33. D. Vanderbilt, Phys. Rev. B 32, 8412 (1985).

    Article  ADS  Google Scholar 

  34. X. Shen, L. Sun, Z. Yi, E. Benassi, R. Zhang, Z. Shen, S. Sanvito and S. Hou, Phys. Chem. Chem. Phys. 12, 10805 (2010).

    Article  Google Scholar 

  35. J. F. Kirner, W. Dow and W. R. Scheidt, Inorg. Chem. 15, 1685 (1976).

    Article  Google Scholar 

  36. R. Mason, G. A. Williams and P. E. Fielding, J. Chem. Soc., Dalton Trans., 676 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanchul Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, JM., Kim, M. & Kim, H. Ab initio Study on Adsorption of Transition-Metal Phthalocyanine on a Quasi-One-Dimensional Metallic Surface, In/Si(111)-4×1. J. Korean Phys. Soc. 74, 251–255 (2019). https://doi.org/10.3938/jkps.74.251

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.251

Keywords

Navigation