Fabrication of Chromatic Electronic Textiles Synthesized by Conducting Polymer

Abstract

Most of the electronic textiles (e-textiles) were fabricated by carbon-based materials such as graphene, carbon nanotube (CNT), and hybrids of graphene and CNTs due to their high electrical conductivity, flexibility, and good stability. However, it is difficult to synthesize a colored e-textiles because the carbon-based e-textiles have only a black color. In this study, we produced the chromatic e-textiles synthesized with different conductive polymer such as polyaniline, polythiophene, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The chromatic e-textiles were simply fabricated by soaking commercial cotton into an aqueous conductive polymer solution. The chromatic e-textiles were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The electrical conductivity of the chromatic e-textiles was the order of 10−3 S/cm, which was maintained even under bending.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    C. Wang, X. Li, E. Gao, M. Jian, K. Xia, Q. Wang, Z. Xu, T. Ren and Y. Zhang, Adv. Mater. 28, 6640 (2016).

    Article  Google Scholar 

  2. [2]

    J. Ge, L. Sun, F-R. Zhang, Y. Zhang, L-A. Shi, H-Y. Zhao, H-W. Zhu, H-L. Jiang and S-H. Yu, Adv. Mater. 28, 772 (2016).

    Google Scholar 

  3. [3]

    J. Hou, M. Liu, H. Zhang, Y. Song, X. Jiang, A. Yu, L. Jiang and B. Su, J. Mater. Chem. A 5, 13138 (2017).

    Article  Google Scholar 

  4. [4]

    Y. Li, Y. Li, M. Su, W. Li, Y. Li, H. Li, X. Qian, X. Zhang, F. Li and Y. Song, Adv. Electron. Mater. 3, 1700253 (2017).

    Article  Google Scholar 

  5. [5]

    S. Takamatsu, T. Lonjaret, E. lsmailova, A. Masuda, T. ltoh and G. G. Malliaras, Adv. Mater. 28, 4485 (2016).

    Article  Google Scholar 

  6. [6]

    Y. J. Yun, W. G. Hong, W-J. Kim, Y. Jun and B. H. Kim, Adv. Mater. 25, 5701 (2013).

    Article  Google Scholar 

  7. [7]

    J. W. Jeon, S. Y. Cho, Y. J. Jeong, D. S. Shin, N. R. Kim, Y. S. Yun, H-T. Kim, S. B. Choi, W. G. Hong, H. J. Kim, H-J. Jin and B. H. Kim, Adv. Mater. 29, 1605479 (2017).

    Article  Google Scholar 

  8. [8]

    R. M. A. P. Lima, J. J. Alcaraz-Espinoza, F. A. G. da Silva, Jr., and H. P. de Oliveira, ACS Appl. Mater. Interfaces 10, 13783 (2018).

    Article  Google Scholar 

  9. [9]

    A. M. Abdelkader, N. Karim, C. Vallés, S. Afroj, K. S. Novoselov and S. G. Yeates, 2D Mater. 4, 035016 (2017).

    Article  Google Scholar 

  10. [10]

    J. W. Jeon, J. Y. Oh, S. Y. Cho, S. Lee, H S. Jang, W. T. Jung, J-G. Kim, H. Kim, H. J. Kim, S. Kim, S. Han, J. Kim, Y. J. Chang, D. Suh, H-J. Jin and B. H. Kim, Materials Today, https://doi.org/10.1016/j.mattod.2018.03.038 (2018).

    Google Scholar 

  11. [11]

    Y. Xia, K. Sun and J. Ouyang, Adv. Mater. 24, 2436 (2012).

    Article  Google Scholar 

  12. [12]

    Z. Ma, P. Chen, W. Cheng, K. Yan, L. Pan, Y. Shi and G. Yu, Nano Lett., DOI: 10.1021/acs.nanolett.8b01825 (2018).

    Google Scholar 

  13. [13]

    H. Yoon, Nanomaterials 3, 524 (2013).

    ADS  Article  Google Scholar 

  14. [14]

    O. Bubnova, M. Berggren and X. Crispin, J. Am. Chem. Soc. 134, 16456 (2012).

    Article  Google Scholar 

  15. [15]

    K. Wang, H. Wu, Y. Meng and Z. Wei, Small 10, 14 (2014).

    Article  Google Scholar 

  16. [16]

    H. Gao and K. Lian, RSC Adv. 4, 33091 (2014).

    Article  Google Scholar 

  17. [17]

    C. Wu, T. W. Kim, T. Guo and F. Li, Nano Energy 32, 367 (2017).

    Article  Google Scholar 

  18. [18]

    Y. Shi, L. Peng, Y. Ding, Y. Zhao and G. Yu, Chem. Soc. Rev. 44, 6684 (2015).

    Article  Google Scholar 

  19. [19]

    G. Kaur, R. Adhikari, P. Cass, M. Bown and P. Gunatillake, RSC Adv. 5, 37553 (2015).

  20. [20]

    N. K. Guimard, N. Gomez and C. E. Schmidt, Prog. Polym. Sci. 32, 876 (2007).

    Article  Google Scholar 

  21. [21]

    C. Chung, M. Lee and E. K. Choe, Carbohydr. Polym. 58, 417 (2004).

    Article  Google Scholar 

  22. [22]

    N. P. S. Chauhan, R. Ameta, R. Ameta and S. C. Ameta, Indian J. Chem. Technol. 18, 118 (2011).

    Google Scholar 

  23. [23]

    B. Butoi, A. Groza, P. Dinca, A. Balan and V. Barna, Polymers 9, 732 (2017).

    Article  Google Scholar 

  24. [24]

    M. Chang, X. L. Cao, H. Zeng and L. Zhang, Chem. Phys. Lett. 446, 370 (2007).

    ADS  Article  Google Scholar 

  25. [25]

    A. Gök, M. Omastová and A. Yavuz, Synth. Met. 157, 23 (2007).

    Article  Google Scholar 

  26. [26]

    C. Sriprachuabwong, C. Karuwan, A. Wisitsorrat, D. Phokharatkul, T. Lomas, P. Sritongkham and A. Tuantranont, J. Mater. Chem. 22, 5478 (2012).

    Article  Google Scholar 

  27. [27]

    P. Damlin, C. Kvarnström and A. Ivaska, J. Electroanal. Chem. 570, 113 (2004).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Byung Hoon Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeon, J.W., Han, S. & Kim, B.H. Fabrication of Chromatic Electronic Textiles Synthesized by Conducting Polymer. J. Korean Phys. Soc. 74, 122–126 (2019). https://doi.org/10.3938/jkps.74.122

Download citation

Keywords

  • Electronic textiles
  • Conductive polymer
  • Electrical conductivity