Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 122–126 | Cite as

Fabrication of Chromatic Electronic Textiles Synthesized by Conducting Polymer

  • Jun Woo Jeon
  • Songlee Han
  • Byung Hoon KimEmail author
Article
  • 17 Downloads

Abstract

Most of the electronic textiles (e-textiles) were fabricated by carbon-based materials such as graphene, carbon nanotube (CNT), and hybrids of graphene and CNTs due to their high electrical conductivity, flexibility, and good stability. However, it is difficult to synthesize a colored e-textiles because the carbon-based e-textiles have only a black color. In this study, we produced the chromatic e-textiles synthesized with different conductive polymer such as polyaniline, polythiophene, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The chromatic e-textiles were simply fabricated by soaking commercial cotton into an aqueous conductive polymer solution. The chromatic e-textiles were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The electrical conductivity of the chromatic e-textiles was the order of 10−3 S/cm, which was maintained even under bending.

Keywords

Electronic textiles Conductive polymer Electrical conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Wang, X. Li, E. Gao, M. Jian, K. Xia, Q. Wang, Z. Xu, T. Ren and Y. Zhang, Adv. Mater. 28, 6640 (2016).CrossRefGoogle Scholar
  2. [2]
    J. Ge, L. Sun, F-R. Zhang, Y. Zhang, L-A. Shi, H-Y. Zhao, H-W. Zhu, H-L. Jiang and S-H. Yu, Adv. Mater. 28, 772 (2016).Google Scholar
  3. [3]
    J. Hou, M. Liu, H. Zhang, Y. Song, X. Jiang, A. Yu, L. Jiang and B. Su, J. Mater. Chem. A 5, 13138 (2017).CrossRefGoogle Scholar
  4. [4]
    Y. Li, Y. Li, M. Su, W. Li, Y. Li, H. Li, X. Qian, X. Zhang, F. Li and Y. Song, Adv. Electron. Mater. 3, 1700253 (2017).CrossRefGoogle Scholar
  5. [5]
    S. Takamatsu, T. Lonjaret, E. lsmailova, A. Masuda, T. ltoh and G. G. Malliaras, Adv. Mater. 28, 4485 (2016).CrossRefGoogle Scholar
  6. [6]
    Y. J. Yun, W. G. Hong, W-J. Kim, Y. Jun and B. H. Kim, Adv. Mater. 25, 5701 (2013).CrossRefGoogle Scholar
  7. [7]
    J. W. Jeon, S. Y. Cho, Y. J. Jeong, D. S. Shin, N. R. Kim, Y. S. Yun, H-T. Kim, S. B. Choi, W. G. Hong, H. J. Kim, H-J. Jin and B. H. Kim, Adv. Mater. 29, 1605479 (2017).CrossRefGoogle Scholar
  8. [8]
    R. M. A. P. Lima, J. J. Alcaraz-Espinoza, F. A. G. da Silva, Jr., and H. P. de Oliveira, ACS Appl. Mater. Interfaces 10, 13783 (2018).CrossRefGoogle Scholar
  9. [9]
    A. M. Abdelkader, N. Karim, C. Vallés, S. Afroj, K. S. Novoselov and S. G. Yeates, 2D Mater. 4, 035016 (2017).CrossRefGoogle Scholar
  10. [10]
    J. W. Jeon, J. Y. Oh, S. Y. Cho, S. Lee, H S. Jang, W. T. Jung, J-G. Kim, H. Kim, H. J. Kim, S. Kim, S. Han, J. Kim, Y. J. Chang, D. Suh, H-J. Jin and B. H. Kim, Materials Today, https://doi.org/10.1016/j.mattod.2018.03.038 (2018).Google Scholar
  11. [11]
    Y. Xia, K. Sun and J. Ouyang, Adv. Mater. 24, 2436 (2012).CrossRefGoogle Scholar
  12. [12]
    Z. Ma, P. Chen, W. Cheng, K. Yan, L. Pan, Y. Shi and G. Yu, Nano Lett., DOI: 10.1021/acs.nanolett.8b01825 (2018).Google Scholar
  13. [13]
    H. Yoon, Nanomaterials 3, 524 (2013).ADSCrossRefGoogle Scholar
  14. [14]
    O. Bubnova, M. Berggren and X. Crispin, J. Am. Chem. Soc. 134, 16456 (2012).CrossRefGoogle Scholar
  15. [15]
    K. Wang, H. Wu, Y. Meng and Z. Wei, Small 10, 14 (2014).CrossRefGoogle Scholar
  16. [16]
    H. Gao and K. Lian, RSC Adv. 4, 33091 (2014).CrossRefGoogle Scholar
  17. [17]
    C. Wu, T. W. Kim, T. Guo and F. Li, Nano Energy 32, 367 (2017).CrossRefGoogle Scholar
  18. [18]
    Y. Shi, L. Peng, Y. Ding, Y. Zhao and G. Yu, Chem. Soc. Rev. 44, 6684 (2015).CrossRefGoogle Scholar
  19. [19]
    G. Kaur, R. Adhikari, P. Cass, M. Bown and P. Gunatillake, RSC Adv. 5, 37553 (2015).Google Scholar
  20. [20]
    N. K. Guimard, N. Gomez and C. E. Schmidt, Prog. Polym. Sci. 32, 876 (2007).CrossRefGoogle Scholar
  21. [21]
    C. Chung, M. Lee and E. K. Choe, Carbohydr. Polym. 58, 417 (2004).CrossRefGoogle Scholar
  22. [22]
    N. P. S. Chauhan, R. Ameta, R. Ameta and S. C. Ameta, Indian J. Chem. Technol. 18, 118 (2011).Google Scholar
  23. [23]
    B. Butoi, A. Groza, P. Dinca, A. Balan and V. Barna, Polymers 9, 732 (2017).CrossRefGoogle Scholar
  24. [24]
    M. Chang, X. L. Cao, H. Zeng and L. Zhang, Chem. Phys. Lett. 446, 370 (2007).ADSCrossRefGoogle Scholar
  25. [25]
    A. Gök, M. Omastová and A. Yavuz, Synth. Met. 157, 23 (2007).CrossRefGoogle Scholar
  26. [26]
    C. Sriprachuabwong, C. Karuwan, A. Wisitsorrat, D. Phokharatkul, T. Lomas, P. Sritongkham and A. Tuantranont, J. Mater. Chem. 22, 5478 (2012).CrossRefGoogle Scholar
  27. [27]
    P. Damlin, C. Kvarnström and A. Ivaska, J. Electroanal. Chem. 570, 113 (2004).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsIncheon National UniversityIncheonKorea

Personalised recommendations