Skip to main content
Log in

Modeling and Simulation Study of Reduced Self-Heating in Bottom-Gate β-Ga2O3 MISFETs with a h-BN Gate Insulator

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Beta-gallium oxide (β-Ga2O3) is an emerging ultra-wide bandgap semiconductor material for high-power devices. However, one of the major drawbacks is the low thermal conductivity resulting in poor heat dissipation, and the so-called self-heating effect reduces carrier mobility and drain current degradation, and even causes a device reliability issue. Here, we propose a bottom-gate β-Ga2O3 field-effect transistor with a hexagonal boron-nitride (h-BN) gate-insulator and investigate the self-heating effect in comparison with an aluminum oxide (Al2O3) insulator using physics-based TCAD simulations. The h-BN with high thermal conductivity reduces the lattice temperature of the β-Ga2O3 channel and decreases drain current degradation. Furthermore, as the thickness of the insulator decreases below 50 nm and the channel length is scaled down to 5 μm, the reduced self-heating effect becomes more prominent. The results imply that the highly thermal-conductive h-BN insulator is promising for achieving high performance β-Ga2O3 metal insulator semiconductor field-effect transistor (MISFET) with the bottom-gate configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Stepanov, V. Nikolaev, V. Bougrov and A. Romanov, Rev. Adv. Mater. Sci. 44, 63 (2016).

    Google Scholar 

  2. M. Higashiwaki and G. H. Jessen, Appl. Phys. Lett. 112, 060401 (2018).

    Article  ADS  Google Scholar 

  3. S. J. Pearton et al., Appl. Phys. Rev. 5, 011301 (2018).

    Article  ADS  Google Scholar 

  4. R. Roy, V. G. Hill and E. F. Osborn, J. Am. Chem. Soc. 74, 719 (1952).

    Article  Google Scholar 

  5. B. J. Baliga, IEEE Electron Dev. Lett. 10, 455 (1989).

    Article  ADS  Google Scholar 

  6. M. A. Mastro et al., ECS J. Solid State Sci. Tech. 6, P356 (2017).

    Article  Google Scholar 

  7. K. Akito et al., Jpn. J. Appl. Phys. 55, 1202A2 (2016).

    Article  Google Scholar 

  8. A. Hideo et al., Jpn. J. Appl. Phys. 47, 8506 (2008).

    Article  ADS  Google Scholar 

  9. M. D. Santia, N. Tandon and J. D. Albrecht, Appl. Phys. Lett. 107, 041907 (2015).

    Article  ADS  Google Scholar 

  10. S. A. O. Russell et al., J. Electron Dev. Soc. 4, 256 (2017).

    Google Scholar 

  11. H. Zhou et al., ACS Omega 2, 7723 (2017).

    Article  Google Scholar 

  12. J. Noh et al., Proceeding of the 76th Device Research Conference (CA, USA, 2018) pp. 1–2.

    Google Scholar 

  13. I. Jo et al., Nano Lett. 13, 550 (2013).

    Article  ADS  Google Scholar 

  14. M. T. Alam, M. S. Bresnehan, J. A. Robinson and M. A. Haque, Appl. Phys. Lett. 104, 013113 (2014).

    Article  ADS  Google Scholar 

  15. H. Zhou et al., Nano Res. 7, 1232 (2014).

    Article  Google Scholar 

  16. M. Higashiwaki et al., Proceeding of the 71st Device Research Conference (IN, USA, 2013) pp. 1–2.

    Book  Google Scholar 

  17. ATLAS SILVACO, Simulation Standard 23, 7 (2013).

    Google Scholar 

  18. Goodfellow Catalogue 1993/1994: Metals, Alloys, Compounds, Ceramics, Polymers, Composites (Goodfellow Cambridge Limited, U.K., 1993).

    Google Scholar 

  19. K. Irmscher et al., J. Appl. Phys. 110, 063720 (2011).

    Article  ADS  Google Scholar 

  20. A. Laturia, M. L. Van de Put and W. G. Vandenberghe, NPJ 2D Mater. Appl. 2, 6 (2018).

    Article  Google Scholar 

  21. M. B. Kleiner, S. A. Kuhn and W. Weber, Proceeding of the 25th European Solid State Device Research Conference (Hague, Netherlands, 1995), pp. 122–123.

    Google Scholar 

  22. A. S. Royet et al., IEEE Trans. Electron Dev. 47, 2221 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded and conducted under the Competency Development Program for Industry Specialists of the Korean Ministry of Trade, Industry and Energy (MOTIE), operated by Korea Institute for Advancement of Technology (KIAT) (No. N0001883, HRD program for Software-SoC convergence).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geonwook Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, S., Yoo, G. & Heo, J. Modeling and Simulation Study of Reduced Self-Heating in Bottom-Gate β-Ga2O3 MISFETs with a h-BN Gate Insulator. J. Korean Phys. Soc. 74, 1171–1175 (2019). https://doi.org/10.3938/jkps.74.1171

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.1171

Keywords

Navigation