Skip to main content
Log in

Alkali Metal-Assisted Growth of Single-Layer Molybdenum Disulfide

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report alkali metal-assisted growth of monolayer molybdenum disulfide (MoS2) by chemical vapor deposition. Single-layer MoS2 flakes with high-quality and large-scale (>∼200 μm) are successfully fabricated on alkali metal-coated SiO2 substrates. On the other hand, particle-like MoS2 tends to grow on bare SiO2 substrates. Detailed growth process of layered MoS2 with surface-coated alkali metal is suggested. A series of experimental and theoretical results indicate that alkali metals play a role in strong surface adsorption and re-supply of molybdenum precursor to the growth surface during lateral growth of MoS2. We believe that our results will provide fruitful information for large-scale or selective-area growth of single-layered transition metal dichalcogenides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. F. Mak et al., Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  2. A. Splendiani et al., Nano Lett. 10, 1271 (2010).

    Article  ADS  Google Scholar 

  3. H. Li et al., Adv. Func. Mater. 22, 1385 (2012).

    Article  ADS  Google Scholar 

  4. H. L. Z Zeng et al., Nat. Nanotechnol. 7, 490 (2012).

    Article  ADS  Google Scholar 

  5. X. D. Duan et al., Chem. Soc. Rev. 44, 8859 (2015).

    Article  Google Scholar 

  6. M. K. Jana and C. N. Rao, Philos. Trans. A Math. Phys. Eng. Sci. 374, 2076 (2016).

    Article  Google Scholar 

  7. K. F. Mak and J. Shan, Nature Photonics 10, 216 (2016).

    Article  ADS  Google Scholar 

  8. H. Peelaers and C. G. Van de Walle, Phys. Rev. B 86, 241401 (2012).

    Article  ADS  Google Scholar 

  9. B. Radisavljevic et al., Nat. Nanotechnol. 6, 147 (2011).

    Article  ADS  Google Scholar 

  10. H. Wang et al., Nano Lett. 12, 4674 (2012).

    Article  ADS  Google Scholar 

  11. H. Liu et al., Nano Lett. 13, 2640 (2013).

    Article  ADS  Google Scholar 

  12. J. H. Kang, W. Liu and K. Banerjee, Appl. Phys. Lett. 104, 093106 (2014).

    Article  ADS  Google Scholar 

  13. X. Tong et al., Nano-Micro Lett. 7, 203 (2015).

    Article  Google Scholar 

  14. A. Nourbakhsh et al., Nano Lett. 16, 7798 (2016).

    Article  ADS  Google Scholar 

  15. J. Shim and J. H. Park, Org. Electron. 33, 172 (2016).

    Article  Google Scholar 

  16. L. L. Yu et al., Nano Lett. 16, 6349 (2016).

    Article  ADS  Google Scholar 

  17. G. Eda et al., Nano Lett. 11, 5111 (2011).

    Article  ADS  Google Scholar 

  18. H. Li, J. M. Wu, Z. Y. Yin and H. Zhang, Acc. Chem. Res. 47, 1067 (2014).

    Article  Google Scholar 

  19. X. B. Fan et al., Nano Lett. 15, 5956 (2015).

    Article  ADS  Google Scholar 

  20. G. Z. Magda et al., Sci. Rep. 5, 14714 (2015).

    Article  ADS  Google Scholar 

  21. Y. H. Lee et al., Adv. Mater. 24, 2320 (2012).

    Article  Google Scholar 

  22. A. M. van der Zande et al., Nat. Mater. 12, 554 (2013).

    Article  ADS  Google Scholar 

  23. X. Ling et al., Nano Lett. 14, 464 (2014).

    Article  ADS  Google Scholar 

  24. S. S. Wang et al., Chem. Mater. 26, 6371 (2014).

    Article  Google Scholar 

  25. Y. M. Shi et al., Nano Lett. 12, 2784 (2012).

    Article  ADS  Google Scholar 

  26. Y. J. Zhan et al., Small 8, 966 (2012).

    Article  Google Scholar 

  27. Q. Q. Ji et al., Nano Lett. 13, 3870 (2013).

    Article  ADS  Google Scholar 

  28. Y. F. Yu et al., Sci. Rep. 3, 1866 (2013).

    Article  Google Scholar 

  29. Y. Lee et al., Nanoscale 6, 2821 (2014).

    Article  ADS  Google Scholar 

  30. L. K. Tan et al., Nanoscale 6, 10584 (2014).

    Article  ADS  Google Scholar 

  31. K. Kang et al., Nature 520, 656 (2015).

    Article  ADS  Google Scholar 

  32. W. Wan et al., Rsc Adv. 6, 323 (2016).

    Article  Google Scholar 

  33. S. L. Shang et al., Nano Lett. 16, 5742 (2016).

    Article  ADS  Google Scholar 

  34. H. Kim et al., Nanotechnology 28, 36LT01 (2017).

  35. S. M. Kim et al., Nat. Commun. 6, 8662 (2015).

    Article  ADS  Google Scholar 

  36. S. H. Chae et al., Nat. Mater. 12, 403 (2013).

    Article  ADS  Google Scholar 

  37. J. Wienold, R. E. Jentoft and T. Ressler, Eur. J. Inorg. Chem. 6, 1058 (2003).

    Article  Google Scholar 

  38. M. Anwar, C. A. Hogarth and R. Bulpett, J. Mater. Sci. 25, 1784 (1990).

    Article  ADS  Google Scholar 

  39. T. Sheng, B. Cao, Y. Zhang and H. Zhang, Cryst. Eng. Comm. 17, 1139 (2015).

    Article  Google Scholar 

  40. D. M. Dobkin and M. K. Zuraw, Principles of Chemical Vapor Deposition (Kluwer academic publishers, Dordrecht, 2003).

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C1002844) and the Ministry of Education (No. 2016R1A6A1A03012877). It was also partially supported by the research program of Dongguk University, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woochul Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S.H., Kim, Y.J., Yang, W. et al. Alkali Metal-Assisted Growth of Single-Layer Molybdenum Disulfide. J. Korean Phys. Soc. 74, 1032–1038 (2019). https://doi.org/10.3938/jkps.74.1032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.1032

Keywords

Navigation