Skip to main content

Strain Simulation of Diamond NV Centers in High Q-Factor Diamond Membranes


In the field of strain-based hybrid mechanical systems, understanding the local strain profile and realizing strong strain coupling is crucial. Here a theoretical investigation is conducted on hybrid devices consisting of diamond membranes with a high Q-factor and embedded nitrogen-vacancy defect centers. Simulation based on a three-dimensional finite element method reveals microscopic strain distribution in the membrane’s basis as well as in the defect’s basis. For strong strain coupling, we design diamond phononic crystal devices with a honeycomb lattice, enabling localized strain in a small mode volume and an enhanced Q-factor. The hybrid devices studied in this paper are promising candidates for various quantum applications, including strain-mediated long range spin-spin interaction, multi-mode optomechanics, and topological operations with exceptional points.

This is a preview of subscription content, access via your institution.


  1. [1]

    P. Treutlein, C. Genes, K. Hammerer, M. Poggio and P. Rabl, Hybrid Mechanical Systems edited by M. Aspelmeyer, T. J. Kippenberg and F. Marquardt (Springer, Berlin, 2014).

  2. [2]

    D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong and A. C. B. Jayich, Journal of Optics 19, 033001 (2017).

    ADS  Article  Google Scholar 

  3. [3]

    A. Jockel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher and P. Treutlein, Nat. Nanotechnol. 10, 55 (2014).

    ADS  Article  Google Scholar 

  4. [4]

    A. D. O’Connell et al., Nature 464, 697 (2010).

    ADS  Article  Google Scholar 

  5. [5]

    I. Yeo et al., Nat. Nanotechnol. 9, 106 (2014).

    ADS  Article  Google Scholar 

  6. [6]

    P. Ovartchaiyapong, K. W. Lee, B. A. Myers and A. C. B. Jayich, Nat. Commun. 5, 4429 (2014).

    ADS  Article  Google Scholar 

  7. [7]

    K. W. Lee, D. Lee, P. Ovartchaiyapong, J. Minguzzi, J. R. Maze and A. C. B. Jayich, Phys. Rev. Appl. 6, 034005 (2016).

    ADS  Article  Google Scholar 

  8. [8]

    A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp and P. Maletinsky, Nat. Phys. 11, 820 (2015).

    Article  Google Scholar 

  9. [9]

    D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart and H. Wang, Phys. Rev. Lett. 116, 143602 (2016).

    ADS  Article  Google Scholar 

  10. [10]

    P. Ovartchaiyapong, L. M. A. Pascal, B. A. Myers, P. Lauria and A. C. B. Jayich, Appl. Phys. Lett. 101, 163505 (2012).

    ADS  Article  Google Scholar 

  11. [11]

    M. J. Burek, Y. Chu Y, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin and M. Loncar, Nat. Commun. 5, 5718 (2014).

    ADS  Article  Google Scholar 

  12. [12]

    D. Lee, M. Underwood, D. Mason, A. B. Shkarin, S. W. Hoch and J. G. E. Harris, Nat. Commun. 6, 6232 (2015).

    ADS  Article  Google Scholar 

  13. [13]

    H. Xu, D. Mason, L. Jiang and J. G. E. Harris, Nature 537, 80 (2016).

    ADS  Article  Google Scholar 

  14. [14]

    J. Chan et al., Nature 478, 89 (2011).

    ADS  Article  Google Scholar 

  15. [15]

    Y. Tsaturyan, A. Barg, E. S. Polzik and A. Schliesser, Nat. Nanotechnol. 12, 776 (2017).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Donghun Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choe, S., Lee, D. Strain Simulation of Diamond NV Centers in High Q-Factor Diamond Membranes. J. Korean Phys. Soc. 73, 95–99 (2018).

Download citation


  • Diamond NV center
  • Diamond mechanical oscillator
  • Strain