Skip to main content
Log in

A Passage to Topological Matter: Colloquium

  • Review Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Topological matter has become one of the most important subjects in contemporary condensed matter physics. Here, I would like to provide a pedagogical review explaining some of the main ideas, which were pivotal in establishing topological matter as such an important subject. Specifically, I explain how the integer quantum Hall state played the role as a prototype for topological matter, eventually leading to the concept of topological insulator. The topological nature of the integer quantum Hall state is best represented by the Thouless-Kohmoto-Nightingale-den Nijs, or so-called TKNN formula, which connects between the Berry phase and the Hall conductivity. The topological non-triviality of topological insulator stems from the existence of a Dirac monopole in an appropriate, but often hidden Hamiltonian parameter space. Interestingly, having the identical Dirac monopole structure, the Hamiltonian describing the Rabi oscillation bears the essence of topological insulator. The concept of topological matter has expanded to include topological semimetals such as Weyl and Dirac semimetals. A final frontier in the research of topological matter is the interaction-induced topological phases of matter, namely, the fractional Chern and topological insulators. The existence of the fractional Chern and topological insulators has been proposed theoretically by drawing an analogy from the fractional quantum Hall states. The gist of this proposal is explained along with some of its issues. I conclude this review by discussing some of the future directions in the research of topological matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Berry, Proc. R. Soc. A 392, 45 (1984).

    Article  ADS  Google Scholar 

  2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  3. X-L. Qi and S-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  4. R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

    Article  ADS  Google Scholar 

  5. D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

    Article  ADS  Google Scholar 

  6. B. I. Halperin, Phys. Rev. B 25, 2185 (1982).

    Article  ADS  Google Scholar 

  7. P. Streda, J. Kucera and A. H. MacDonald, Phys. Rev. Lett. 59, 1973 (1987).

    Article  ADS  Google Scholar 

  8. D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).

    Article  ADS  Google Scholar 

  9. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

    Article  ADS  Google Scholar 

  10. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  11. L. Fu, C. L. Kane and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  12. L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  13. W-R. Lee and K. Park, Phys. Rev. B 92, 195144 (2015).

    Article  ADS  Google Scholar 

  14. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  15. S. Murakami, New J. Phys. 9, 356 (2007).

    Article  Google Scholar 

  16. X. Wan, A. M. Turner, A. Vishwanath and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  17. Z. Wang, Y. Sun, X-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai and Z. Fang, Phys. Rev. Lett. 85, 195320 (2012).

    Google Scholar 

  18. K-Y. Yang, Y-M. Lu and Y. Ran, Phys. Rev. B 84, 075129 (2011).

    Article  ADS  Google Scholar 

  19. B-J. Yang, E-G. Moon, H. Isobe and N. Nagaosa, Nat. Phys. 10, 774 (2014).

    Article  Google Scholar 

  20. H. Isobe, B-J. Yang, A. Chubukov, J. Schmalian and N. Nagaosa, Phys. Rev. Lett. 116, 076803 (2016).

    Article  ADS  Google Scholar 

  21. E. Tang, J-W. Mei and X-G. Wen, Phys. Rev. Lett. 106, 236802 (2011).

    Article  ADS  Google Scholar 

  22. K. Sun, Z. Gu, Z. H. Katsura and S. Das Sarma, Phys. Rev. Lett. 106, 236803 (2011).

    Article  ADS  Google Scholar 

  23. T. Neupert, L. Santos, C. Chamon and C. Mudry, Phys. Rev. Lett. 106, 236804 (2011).

    Article  ADS  Google Scholar 

  24. D. N. Sheng, Z-C. Gu, K. Sun and L. Sheng, Nat. Commun. 2, 389 (2011).

    Article  Google Scholar 

  25. Y-F. Wang, Z-C. Gu, C-D. Gong and D. N. Sheng, Phys. Rev. Lett. 107, 146803 (2011).

    Article  ADS  Google Scholar 

  26. N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011).

    Google Scholar 

  27. X-L. Qi, Phys. Rev. Lett. 107, 126803 (2011).

    Article  ADS  Google Scholar 

  28. Y-L. Wu, N. Regnault and B. A. Bernevig, Phys. Rev. B 86, 085129 (2012).

    Article  ADS  Google Scholar 

  29. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

    Article  ADS  Google Scholar 

  30. J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).

    Article  ADS  Google Scholar 

  31. J. K. Jain, Composite Fermions (Cambridge University Press, Cambridge, England, 2007).

    Google Scholar 

  32. M. Hermanns, Phys. Rev. B 87, 235128 (2013).

    Article  ADS  Google Scholar 

  33. E. H. Rezayi and F. D. M. Haldane, Phys. Rev. B 50, 17199 (1994).

    Article  ADS  Google Scholar 

  34. B. A. Bernevig and S-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).

    Article  ADS  Google Scholar 

  35. M. Levin and A. Stern, Phys. Rev. Lett. 103, 196803 (2009).

    Article  ADS  Google Scholar 

  36. J. Maciejko, X-L. Qi, A. Karch and S-C. Zhang, Phys. Rev. Lett. 105, 246809 (2010).

    Article  ADS  Google Scholar 

  37. L. Santos, T. Neupert, S. Ryu, C. Chamon and C. Mudry, Phys. Rev. B 84, 165138 (2011).

    Article  ADS  Google Scholar 

  38. M. Levin, F. J. Burnell, M. Koch-Janusz and A. Stern, Phys. Rev. B 84, 235145 (2011).

    Article  ADS  Google Scholar 

  39. Y-M. Lu and Y. Ran, Phys. Rev. B 85, 165134 (2012).

    Article  ADS  Google Scholar 

  40. H. Chen and K. Yang, Phys. Rev. B 85, 195113 (2012).

    Article  ADS  Google Scholar 

  41. M. Levin and A. Stern, Phys. Rev. B 86, 115131 (2012).

    Article  ADS  Google Scholar 

  42. J. Klinovaja and Y. Tserkovnyak, Phys. Rev. B 90, 115426 (2014).

    Article  ADS  Google Scholar 

  43. C. Repellin, B. A. Bernevig and N. Regnault, Phys. Rev. B 90, 245401 (2014).

    Article  ADS  Google Scholar 

  44. S. Furukawa and M. Ueda, Phys. Rev. A 90, 033602 (2014).

    Article  ADS  Google Scholar 

  45. A. Stern, Annu. Rev. Condens. Matter Phys. 7, 349 (2016).

    Article  ADS  Google Scholar 

  46. S. Mukherjee and K. Park, arXiv:1711.07683 (2017).

  47. T. Oka and S. Kitamura, arXiv:1804.03212 (2018).

  48. T. Oka and H. Aoki, Phys. Rev. B 79, 081406(R) (2009).

    Article  ADS  Google Scholar 

  49. T. Kitagawa, T. Oka, A. Brataas, L. Fu and E. Demler, Phys. Rev. B 84, 235108 (2011).

    Article  ADS  Google Scholar 

  50. A. Kundu, H. A. Fertig and B. Seradjeh, Phys. Rev. Lett. 113, 236803 (2014).

    Article  ADS  Google Scholar 

  51. H. Dehghani, T. Oka and A. Mitra, Phys. Rev. B 91, 155422 (2015).

    Article  ADS  Google Scholar 

  52. M. A. Sentef, M. Claassen, A. F. Kemper, B. Moritz, T. Oka, J. K. Freericks and T. P. Devereaux, Nat. Commun. 6, 7047 (2015), doi:10.1038/ncomms8047.

    Article  Google Scholar 

  53. T. Mikami, S. Kitamura, K. Yasuda, N. Tsuji, T. Oka and H. Aoki, Phys. Rev. B 93, 144307 (2016).

    Article  ADS  Google Scholar 

  54. K. W. Kim, H. W. Kwon and K. Park, arXiv:1808.04079 (2018).

Download references

Acknowledgments

The author is grateful to Sutirtha Mukherjee for careful reading of the manuscript and providing various useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, K. A Passage to Topological Matter: Colloquium. J. Korean Phys. Soc. 73, 817–832 (2018). https://doi.org/10.3938/jkps.73.817

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.817

Keywords

Navigation