Skip to main content

Progress of the KSTAR Research Program Exploring the Advanced High Performance and Steady-State Plasma Operations

Abstract

Korea Superconducting Tokamak Advanced Research (KSTAR) program is strongly focused on solving the scientific and technological issues in steady-state high performance plasma operation in preparation for ITER operation as well as the design basis for DEMO. In this regards, KSTAR has made significant advances in developing long pulse and high performance plasma scenarios utilizing the advantage of the fully superconducting tokamak. Ten-year of KSTAR operation showed the outstanding progress in the plasma control extending the operation window of the plasma discharges achieving the H-mode up to 1 MA in plasma current, up to 72 s in flat top duration, and up to 2.16 in elongation. In addition to the long pulse discharge, high performance discharges with high betas (βN ~ 3) could be achieved in the broad range of edge safety factor (q95) without external error field correction. The unique features of the KSTAR device (magnetic accuracy with extremely low error fields, steady-state capable heating systems, in-vessel control coils, and advanced imaging and profile diagnostics) has been fully exploited to explore the unveiled physics as well as to exploring the systematic solution for suppression of edge localized mode (ELM) crash. Achieved examples are the record long pulse of H-mode operation without an ELM crash (~ 30 s up to date), and progress in the fundamental transport physics through systematic study using these unique capabilities. Based on the previous research results, intensive research will be followed to explore the advanced high beta operation (βN ~ 4) with fully suppressed harmful MHD instabilities aiming the integrated solution for DEMO. In this regards, an additional current drive systems and in-vessel structures will be upgraded.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    G. S. Lee et al., Nucl. Fusion 41, 1515 (2001).

    ADS  Google Scholar 

  2. [2]

    M. Kwon et al., Nucl. Fusion 51, 094006 (2011).

    ADS  Google Scholar 

  3. [3]

    Y. K. Oh et al., Fusion Eng. Des. 84, 344 (2009).

    Google Scholar 

  4. [4]

    S. W. Yoon et al., Nucl. Fusion 51, 113009 (2011).

    ADS  Google Scholar 

  5. [5]

    Y. In et al., Nucl. Fusion 55, 043004 (2015).

    ADS  Google Scholar 

  6. [6]

    Y. In et al., Nucl. Fusion 57, 116054 (2017).

    ADS  Google Scholar 

  7. [7]

    Y. M. Jeon et al., in 16th Int’l Workshop on H-mode Physics and Transport Barriers (St. Petersburg, Russia, Sept. 2017).

    Google Scholar 

  8. [8]

    A. M. Garofalo et al., Nucl. Fusion 57, 076037 (2017).

    ADS  Google Scholar 

  9. [9]

    A. M. Garofalo et al., Nucl. Fusion 55, 123025 (2015).

    ADS  Google Scholar 

  10. [10]

    Y. Sakamoto et al., Nucl. Fusion 49, 095017 (2009).

    ADS  Google Scholar 

  11. [11]

    S. Morita et al., Plasma and Fusion Research 13, 3502046 (2018).

    ADS  Google Scholar 

  12. [12]

    K. J. Jung et al., Int’l J. Energy Research 42, 9 (2018).

    Google Scholar 

  13. [13]

    K. Kim et al., Fusion Eng. Des. 88, 488 (2013).

    Google Scholar 

  14. [14]

    K. Kim et al., Nucl. Fusion 55, 053027 (2015).

    ADS  Google Scholar 

  15. [15]

    Y. S. Park et al., Nucl. Fusion 53, 083029 (2013).

    ADS  Google Scholar 

  16. [16]

    Y. S. Park et al., in KSTAR conference (Daejeon, Korea, Feb. 2016).

    Google Scholar 

  17. [17]

    A. C. Sips et al., Plasma Phys. Control. Fusion 44, B69 (2002).

    Google Scholar 

  18. [18]

    Y. S. Na et al., Proc. IAEA TMSSO, Nara, Japan, May 2015.

    Google Scholar 

  19. [19]

    J. Chung et al., Nucl. Fusion 58, 016019 (2018).

    ADS  Google Scholar 

  20. [20]

    K. Ida et al., Plasma Phys. Control. Fusion 60, 033001 (2018).

    ADS  Google Scholar 

  21. [21]

    R. J. Buttery et al., Physics of Plasma 19, 056111 (2012).

    ADS  Google Scholar 

  22. [22]

    Y. M. Jeon et al., Phys. Rev. Lett. 109, 035004 (2012).

    ADS  Google Scholar 

  23. [23]

    J-K. Park et al., Phys. Rev. Lett. 111, 095002 (2013).

    ADS  Google Scholar 

  24. [24]

    G. S. Yun et al., Physics of Plasma 19, 056114 (2012).

    ADS  Google Scholar 

  25. [25]

    Y. M. Jeon et al., in 26th IAEA Fusion Energy Conference (Kyoto, Japan, Oct. 2016).

    Google Scholar 

  26. [26]

    J. Kim et al., Nucl. Fusion 57, 022001 (2017).

    ADS  Google Scholar 

  27. [27]

    Y. In et al., presentation in APS-DPP 2017.

    Google Scholar 

  28. [28]

    J. Lee et al., Phys. Rev. Lett. 117, 075001 (2016).

    ADS  Google Scholar 

  29. [29]

    S-H. Hong et al., Nucl. Fusion 51, 103027 (2011).

    ADS  Google Scholar 

  30. [30]

    Y. D. Bae et al., Nucl. Fusion 43, 805 (2003).

    ADS  Google Scholar 

  31. [31]

    K. P. Kim et al., Fusion Eng. Des. 86, 671 (2011).

    Google Scholar 

  32. [32]

    G. Federici et al., Nucl. Fusion 41, 1967 (2001).

    ADS  Google Scholar 

  33. [33]

    J. Roth et al., Plasma Phys. Control. Fusion 50, 103001 (2008).

    ADS  Google Scholar 

  34. [34]

    J-G. Bak et al., 15th ITPA meeting on SOL/divertor physics (Helsinki, Finland, May 2011).

    Google Scholar 

  35. [35]

    ITER newsline, http://www.iter.org/newsline/274/ 1639.

  36. [36]

    C. S. Kang et al., Rev. Sci. Instrum. 87, 083508 (2016).

    ADS  Google Scholar 

  37. [37]

    R. Dejarnac et al., 21st ITPA meeting on SOL/divertor physics (Princeton, USA, Jun. 2015).

    Google Scholar 

  38. [38]

    R. A. Pitts et al., 22nd PSI conference (Rome, Italy, May 2016).

    Google Scholar 

  39. [39]

    T. E. Evans et al., Nucl. Fusion 45, 595 (2005).

    ADS  Google Scholar 

  40. [40]

    W. Suttrop et al., Phys. Rev. Lett. 106, 225004 (2011).

    ADS  Google Scholar 

  41. [41]

    H. H. Lee et al., Nucl. Materials and Energy 12, 541 (2017).

    Google Scholar 

  42. [42]

    K. Kim et al., Phys. Plasmas 24, 052506 (2017).

    ADS  Google Scholar 

  43. [43]

    J. E. Rice et al., Nucl. Fusion 47, 1618 (2007).

    ADS  Google Scholar 

  44. [44]

    Y. J. Shi et al., Nucl. Fusion 56, 016014 (2016).

    ADS  Google Scholar 

  45. [45]

    D. H. Na et al., Nucl. Fusion 56, 036011 (2016).

    ADS  Google Scholar 

  46. [46]

    Y. J. Shi et al., Nucl. Fusion 57, 066040 (2017).

    ADS  Google Scholar 

  47. [47]

    J. W. Yoo et al., Phys. Plasmas 24, 072510 (2017).

    ADS  Google Scholar 

  48. [48]

    S. G. Lee et al., Phys. Plasmas 25, 044502 (2018).

    ADS  Google Scholar 

  49. [49]

    J. Seol et al., Phys. Rev. Lett. 109, 195003 (2012).

    ADS  Google Scholar 

  50. [50]

    D. H. Na et al., Nucl. Fusion 57, 126008 (2017).

    ADS  Google Scholar 

  51. [51]

    H. Arnichand et al., Nucl. Fusion 54, 123017 (2014).

    ADS  Google Scholar 

  52. [52]

    W. Lee et al., Nucl. Fusion 46, 023012 (2014).

    Google Scholar 

  53. [53]

    J. A. Lee et al., Phys. Plasmas 25, 022513 (2018).

    ADS  Google Scholar 

  54. [54]

    P. H. Diamond et al., Phys. Plasmas 2, 3640 (1995).

    ADS  Google Scholar 

  55. [55]

    G. Dif-Pradalier et al., Nucl. Fusion 57, 066026 (2017).

    ADS  Google Scholar 

  56. [56]

    M. J. Choi et al., arXiv:1806. 04947v2 (2018).

  57. [57]

    M. J. Choi et al., to be submitted to Phys. Rev. E (2018).

    Google Scholar 

  58. [58]

    S. Tokunaga et al., Phys. Plasmas 19, 092303 (2012).

    ADS  Google Scholar 

  59. [59]

    M. J. Choi et al., Nucl. Fusion 57, 126058 (2017).

    ADS  Google Scholar 

  60. [60]

    S. Ku et al., Phys. Plasmas 25, 056107 (2018).

    ADS  Google Scholar 

  61. [61]

    J. M. Kwon et al., Phys. Plasmas 25, 052506 (2018).

    ADS  Google Scholar 

  62. [62]

    O. Katsuro-Hopkins et al., Nucl. Fusion 50, 025019 (2010).

    ADS  Google Scholar 

  63. [63]

    Y. S. Park et al., Physics of Plasmas 24, 012512 (2017).

    ADS  Google Scholar 

  64. [64]

    G. S. Yun et al., Rev. Sci. Inst. 81, 10D903 (2010).

    Google Scholar 

  65. [65]

    G. S. Yun et al., Phys. Rev. Lett. 109, 145003 (2012).

    ADS  Google Scholar 

  66. [66]

    G. H. Choe et al., Nucl. Fusion 55, 013015 (2015).

    ADS  Google Scholar 

  67. [67]

    Y. B. Nam et al., Nucl. Fusion 58, 066009 (2018).

    ADS  Google Scholar 

  68. [68]

    H. P. Furth et al., Phys. Fluids 16, 1054 (1973).

    ADS  Google Scholar 

  69. [69]

    A. H. Glasser et al., Phys. Fluids 18, 875 (1975).

    ADS  Google Scholar 

  70. [70]

    Z. Chang et al., Phys. Rev. Lett. 74, 4663 (1995).

    ADS  Google Scholar 

  71. [71]

    R. Carrera et al., Phys. Fluids 29, 899 (1986).

    ADS  Google Scholar 

  72. [72]

    A. Pletzer et al., J. Comput. Phys. 115, 530 (1994).

    ADS  MathSciNet  Google Scholar 

  73. [73]

    S. C. Jardin et al., J. Comput. Phys. 226, 2146 (2007).

    ADS  MathSciNet  Google Scholar 

  74. [74]

    N. M. Ferraro et al., J. Comput. Phys. 228, 7742 (2009).

    ADS  MathSciNet  Google Scholar 

  75. [75]

    J. W. Berkery et al., Phys. Rev. Lett. 104, 035003 (2010).

    ADS  Google Scholar 

  76. [76]

    S. A. Sabbagh et al., Nucl. Fusion 50, 025020 (2010).

    ADS  Google Scholar 

  77. [77]

    J. W. Berkery et al., Nucl. Fusion 55, 123007 (2015).

    ADS  Google Scholar 

  78. [78]

    H. Zohm, Phys. Plasmas 4, 3433 (1997).

    ADS  Google Scholar 

  79. [79]

    G. Gantenbein et al., Phys. Rev. Lett. 85, 1242 (2000).

    ADS  Google Scholar 

  80. [80]

    R. J. La Haye et al., Phys. Plasmas 9, 2051 (2002).

    ADS  Google Scholar 

  81. [81]

    C. C. Petty et al., Nucl. Fusion 44, 243 (2004).

    ADS  Google Scholar 

  82. [82]

    A. Isayama et al., Nucl. Fusion 43, 1272 (2003).

    ADS  Google Scholar 

  83. [83]

    A. Isayama et al., Nucl. Fusion 47, 773 (2007).

    ADS  Google Scholar 

  84. [84]

    H. Reimerdes et al., Phys. Rev. Lett. 88, 105005 (2002).

    ADS  Google Scholar 

  85. [85]

    E. Poli et al., Comput. Phys. Commun. 136, 90 (2001).

    ADS  Google Scholar 

  86. [86]

    J. G. Back et al., 45th EPS Conference on Plasma Physics (Parague, Czech, 2018).

    Google Scholar 

  87. [87]

    C. E. Myers et al., 43th EPS Conference on Plasma Physics (Leuven, Belgium, 2016).

    Google Scholar 

  88. [88]

    A. C. England et al., Plasma Sci. Technol. 15, 119 (2013).

    ADS  Google Scholar 

  89. [89]

    J. H. Lee et al., Rev. Sci. Instrum. 81, 063502 (2010).

    ADS  Google Scholar 

  90. [90]

    J. Chung, Rev. Sci. Instrum. Fusion Eng. Des. 89, 349 (2014).

    MathSciNet  Google Scholar 

  91. [91]

    S. G. Lee et al., Rev. Sci. Instrum. 79, 10F117 (2008).

    Google Scholar 

  92. [92]

    J. G. Bak et al., in Proc. 37th EPS Conference on Plasma Physics (2010), p. 5.102.

    Google Scholar 

  93. [93]

    J. G. Bak et al., Rev. Sci. Instrum. 82, 063504 (2011).

    ADS  Google Scholar 

  94. [94]

    J. G. Bak et al., in Proc. 43rd EPS Conference on Plasma Physics (2016), p. 4.036.

    Google Scholar 

  95. [95]

    H. S. Kim et al., Fusion Eng. Des. 123, 641 (2017).

    Google Scholar 

  96. [96]

    Y. U. Nam et al., Rev. Sci. Instrum. 79, 10E705 (2008).

    Google Scholar 

  97. [97]

    Y. U. Nam et al., Fusion Sci. Technol. 55, 180 (2009).

    Google Scholar 

  98. [98]

    K. C. Lee et al., Fusion Eng. Des. 113, 87 (2016).

    Google Scholar 

  99. [99]

    J. H. Lee et al., Rev. Sci. Instrum. 85, 11D407 (2014).

    Google Scholar 

  100. [100]

    J. H. Lee et al., J. Instrum. 12 C12035 (2017).

    Google Scholar 

  101. [101]

    S. H. Jeong et al., Rev. Sci. Instrum. 74, 1433 (2003).

    ADS  Google Scholar 

  102. [102]

    Y. Kogi et al., Rev. Sci. Instrum. 79, 10F115 (2008).

    Google Scholar 

  103. [103]

    S. H. Seo et al., J. Korean Phys. Soc. 65, 1299 (2014).

    ADS  Google Scholar 

  104. [104]

    S. H. Seo et al., Rev. Sci. Instrum. 84, 084702 (2013).

    ADS  Google Scholar 

  105. [105]

    W. H. Ko et al., Rev. Sci. Instrum. 85, 11E413 (2014).

    Google Scholar 

  106. [106]

    S. G. Lee et al., Rev. Sci. Instrum. 87, 11E314 (2016).

    Google Scholar 

  107. [107]

    S. G. Lee et al., Fusion Sci. Technol. 69, 555 (2016).

    Google Scholar 

  108. [108]

    J. Chung et al., Rev. Sci. Instrum. 85, 11D827 (2014).

    Google Scholar 

  109. [109]

    J. Ko et al., Fusion Eng. Des. 109, 742 (2016).

    Google Scholar 

  110. [110]

    J. Ko et al., Rev. Sci. Instrum. 88, 063505 (2017).

    ADS  Google Scholar 

  111. [111]

    K. D. Lee et al., Rev. Sci. Instrum. 85, 11D858 (2014).

    Google Scholar 

  112. [112]

    G. S. Yun et al., Rev. Sci. Instrum. 81, 10D930 (2010).

    Google Scholar 

  113. [113]

    J. Lee et al., J. Instrum. 7, C01037 (2012).

    Google Scholar 

  114. [114]

    G. S. Yun et al., Rev. Sci. Instrum. 85, 11D820 (2014).

    Google Scholar 

  115. [115]

    M. J. Choi et al., Rev. Sci. Instrum. 87, 013506 (2016).

    ADS  Google Scholar 

  116. [116]

    W. Lee et al., Nucl. Fusion 54, 023012 (2014).

    ADS  Google Scholar 

  117. [117]

    Y. U. Nam et al., Rev. Sci. Instrum. 85, 11E434 (2014).

    Google Scholar 

  118. [118]

    M. Lampert et al., Rev. Sci. Instrum. 86, 073501 (2015).

    ADS  Google Scholar 

  119. [119]

    J. Kim et al., 42nd EPS Conference on Plasma Physics (2015), p. P5.194.

    Google Scholar 

  120. [120]

    H. K. Na et al., Fusion Eng. Des. 86, 66 (2011).

    Google Scholar 

  121. [121]

    C. R. Seon et al., Rev. Sci. Instrum. 88, 083511 (2017).

    ADS  Google Scholar 

  122. [122]

    S. H. Lee et al., Rev. Sci. Instrum. 85, 11E827 (2014).

    Google Scholar 

  123. [123]

    I. Song et al., Curr. Appl. Phys. 16, 1284 (2016).

    ADS  Google Scholar 

  124. [124]

    C. S. Kang et al., Rev. Sci. Instrum. 87, 083508 (2016).

    ADS  Google Scholar 

  125. [125]

    H. H. Lee et al., Nucl. Mater. Energy 12, 541 (2017).

    Google Scholar 

  126. [126]

    H. S. Kim et al., Fusion Eng. Des. 109, 809 (2016).

    Google Scholar 

  127. [127]

    J. G. Bak et al., Nucl. Mater. Energy 12, 1270 (2017).

    Google Scholar 

  128. [128]

    J. Jang et al., Curr. Appl. Phys. 18, 461 (2018).

    ADS  Google Scholar 

  129. [129]

    D. C. Seo et al., Rev. Sci. Instrum. 81, 10E128 (2010).

    Google Scholar 

  130. [130]

    J. Kim et al., Rev. Sci. Instrum. 83, 10D305 (2012).

    Google Scholar 

  131. [131]

    Y. S. Lee et al., Fusion Eng. Technol. 60, 501 (2011).

    Google Scholar 

  132. [132]

    A. C. England et al., Phys. Lett. A 375, 3095 (2011).

    ADS  Google Scholar 

  133. [133]

    M. S. Cheon et al., J. Instrum. 7, C05009 (2012).

    Google Scholar 

  134. [134]

    S. H. Jeong et al., Rev. Sci. Instrum. 83, 02B102 (2012).

    Google Scholar 

  135. [135]

    T. S. Kim et al., Rev. Sci. Instrum. 83, 02B112 (2012).

    Google Scholar 

  136. [136]

    D. H. Chang et al., Fusion Eng. Des. 86, 244 (2011).

    Google Scholar 

  137. [137]

    W. Cho et al., Fusion Eng. Des. 96, 425 (2015).

    Google Scholar 

  138. [138]

    Y. S. Bae et al., J. Korean Phys. Soc. 51, 1313 (2007).

    Google Scholar 

  139. [139]

    R. Ellis et al., in Proc. 26th Symposium on Fusion Science (2015), p. 1.

    Google Scholar 

  140. [140]

    Y. D. Bae et al., Nucl. Fusion 43, 805 (2003).

    ADS  Google Scholar 

  141. [141]

    S. J. Wang et al., Fusion Eng. Des. 88, 129 (2013).

    Google Scholar 

  142. [142]

    C. Gormezano et al., Plasma Phys. Control. Fusion 28, 1365 (1986).

    ADS  Google Scholar 

  143. [143]

    J. Hillairet et al., Nucl. Fusion 53, 073004 (2013).

    ADS  Google Scholar 

  144. [144]

    W. Hooke et al., Plasma Phys. Control. Fusion 26, 133 (1984).

    ADS  Google Scholar 

  145. [145]

    V. L. Vdovin et al., Plasma Phys. Rep. 39, 95 (2013).

    ADS  Google Scholar 

  146. [146]

    S. J. Wang et al., Nucl. Fusion 57, 046010 (2017).

    ADS  Google Scholar 

  147. [147]

    C. P. Moeller et al., in Proc. AIP Conf. (1994), p. 289.

    Google Scholar 

  148. [148]

    H. H. Wi et al., Fusion Eng. Des. 126, 67 (2018).

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the work and contributions of the entire KSTAR team and all research collaborators from Korea domestics and from the foreign collaboration institutions. This work was supported by the Ministry of Science and ICT (MSIT) of Korea under the KSTAR research project (NFRI) and was supported by the National Research Foundation of Korea (NRF) under the National R&D Programs (No. 2014M1A7A1A03045368, 2014M1A7A1A03029881, 2014M1A7A1A03045374, 2014M1A7A1A03045092) and A3 Foresight program (No. 2012K2A2A6000443).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yeong-Kook Oh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oh, YK., Yoon, S., Jeon, YM. et al. Progress of the KSTAR Research Program Exploring the Advanced High Performance and Steady-State Plasma Operations. J. Korean Phys. Soc. 73, 712–735 (2018). https://doi.org/10.3938/jkps.73.712

Download citation

Keywords

  • KSTAR
  • Plasma
  • Fusion
  • Steady-state
  • Edge Localized Mode