Skip to main content
Log in

A Brief Overview of RAON Physics

  • Overview Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The Rare Isotope Science Project (RISP) of the Institute for Basic Science (IBS) has been initiated to construct a rare isotope accelerator complex, named RAON, in Daejeon, Korea. In this short article, we briefly introduce the RAON accelerator and experimental systems and summarize essential and important physics issues that RAON could address, focusing on nuclear physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Jeong, New Physics: Sae Mulli 66, 1458 (2016).

    Google Scholar 

  2. RISP, RAON Science: Physics and Beyond, unpublished.

  3. J. Kim, et al., New Physics: Sae Mulli 66, 1491 (2016).

    Google Scholar 

  4. T. Shin, et al., New Physics: Sae Mulli 66, 1500 (2016).

    Google Scholar 

  5. B. A. Li, A. Ramos, G. Verde and I. Vidana, Eur. Phys. J. A 50, 9 (2014).

    Article  ADS  Google Scholar 

  6. C. J. Horowitz et al., J. Phys. G 41, 093001 (2014).

    Article  ADS  Google Scholar 

  7. B. A. Li, Nucl. Phys. News 27, 7 (2017).

    Article  Google Scholar 

  8. H. R. Jaqaman, A. Z. Mekjian and L. Zamick, Phys. Rev. C 29, 2067 (1984).

    Article  ADS  Google Scholar 

  9. G. Pagliara and J. Schaffner-Bielich, Phys. Rev. D 81, 094024 (2010).

    Article  ADS  Google Scholar 

  10. Y. Kim, in Proceedings of the International Conference on Nuclear Theory in the Supercomputing Era (2016), p. 154.

    Google Scholar 

  11. C. E. Detar and T. Kunihiro, Phys. Rev. D 39, 2805 (1989).

    Article  ADS  Google Scholar 

  12. M. Ishihara, International School of Heavy Ion Physics, 4th Course: Exotic nuclei, edited by R. A. Broglia and P. G. Hansen (World Scientific, Singapore, 1998) p. 291.

  13. O. Sorlin and M-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008).

    Article  ADS  Google Scholar 

  14. J. W. Hwang et al., Phys. Lett. B 769, 503 (2017) Erratum: [Phys. Lett. B 774, 723 (2017)].

    Article  ADS  Google Scholar 

  15. P. L. Tai et al., Phys. Rev. C 96, 014323 (2017).

    Article  ADS  Google Scholar 

  16. D. J. Dean and M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607 (2003).

    Article  ADS  Google Scholar 

  17. Special Issue on Pairing and Condensation in Fermionic Systems, Ed. E. Krotscheck, J. Low Temp. Phys. 189, Issue 5 -6, (2017).

  18. P. Papakonstantinou, AIP Conf. Proc. 1947, 020023 (2018) and Refs. therein.

    Article  Google Scholar 

  19. M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee and U. G. Meiβner, arXiv:1705.06192 [nucl-th].

  20. A. Tohsaki, H. Horiuchi, P. Schuck and G. Roepke, Rev. Mod. Phys. 89, 011002 (2017).

    Article  ADS  Google Scholar 

  21. J L Wood and K Heyde, J. Phys. G 43, 020402 (2016).

    Article  ADS  Google Scholar 

  22. C-B. Moon et al., AIP Advances 4, 041001 (2014).

    Article  ADS  Google Scholar 

  23. A. Burrows, Rev. Mod. Phys. 85, 245 (2013).

    Article  ADS  Google Scholar 

  24. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  25. E. Pian et al., Nature 551, 67 (2017).

    ADS  Google Scholar 

  26. R. Diehl et al., Nature 439, 45 (2006).

    Article  ADS  Google Scholar 

  27. A. F. Iyudin et al., Astron. Astrophys. 284, L1 (1994).

    ADS  Google Scholar 

  28. C-B. Moon et al., New Physics: Sae Mulli 60, 779 (2016).

    Google Scholar 

  29. T. Rauscher, Phys. Rev. C 73, 015804 (2006).

    Article  ADS  Google Scholar 

  30. T. Kajino and G. J. Mathews, Rep. Prog. Phys. 80, 084901 (2017).

    Article  ADS  Google Scholar 

  31. C. Patrignani et al., (Particle Data Group), Chin. Phys. C 40, 100001 (2016).

    ADS  Google Scholar 

  32. Y. H. Lam, B. Blank, N. A. Smirnova, J. B. Bueb and M. S. Antony, Atom. Data Nucl. Data Tabl. 99, 680 (2013).

    Article  ADS  Google Scholar 

  33. J. Engel, M. J. Ramsey-Musolf and U. van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013).

    Article  ADS  Google Scholar 

  34. C. H. Greene, P. Giannakeas and J. Perez-Rios, Rev. Mod. Phys. 89, 035006 (2017).

    Article  ADS  Google Scholar 

  35. N. Auerbach and V. Zelevinsky, Rep. Prog. Phys. 74, 106301 (2011).

    Article  ADS  Google Scholar 

  36. I. Rotter and J. P. Bird, Rep. Prog. Phys. 78, 114001 (2015).

    Article  ADS  Google Scholar 

  37. R. Shankar, Rev. Mod. Phys. 66, 129 (1994).

    Article  ADS  Google Scholar 

  38. G. E. Mitchell, A. Richter and H. A. Weidenmller, Rev. Mod. Phys. 82, 2845 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunchan Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, S., Papakonstantinou, P., Ishiyama, H. et al. A Brief Overview of RAON Physics. J. Korean Phys. Soc. 73, 516–523 (2018). https://doi.org/10.3938/jkps.73.516

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.516

Keywords

Navigation