Miniaturization and Integration of Organic Resistive Memory Devices


Recently, organic resistive memory devices have attracted great interest because they can be fabricated to low cost, flexible, and printable memory cells. Here, we reviewed recent advances of miniaturization and integration of organic resistive memory devices. We introduced research background of fabrication of organic resistive memory devices. Then we arranged achievements on miniaturization and integration of organic resistive memory devices in chronological order. Finally, we summarized research outlook of miniaturization and integration of organic resistive memory devices.

This is a preview of subscription content, log in to check access.


  1. [1]

    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada and S. Streiffer, J. Appl. Phys. 100, 051606 (2006).

    Article  ADS  Google Scholar 

  2. [2]

    J. D. Boeck, W. V. Roy, J. Das, V. Motsnyi, Z. Liu, L. Lagae, H. Boeve, K. Dessein and G. Borghs, Semicond. Sci, Technol. 17, 342 (2002).

    Article  ADS  Google Scholar 

  3. [3]

    S. Hudgens and B. Johnson, MRS Bull. 29, 829 (2004).

    Article  Google Scholar 

  4. [4]

    R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).

    Article  ADS  Google Scholar 

  5. [5]

    S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi and M. DeHerren, IEEE Trans. Magn. 35, 2814 (1999).

    Article  ADS  Google Scholar 

  6. [6]

    L. P. Ma, J. Liu and Y. Yang, Appl. Phys. Lett. 80, 2997 (2002).

    Article  ADS  Google Scholar 

  7. [7]

    J. Ouyang, C-W. Chu, C. R. Szmanda, L. Ma and Y. Yang, Adv. Mater. 3, 918 (2004).

    Google Scholar 

  8. [8]

    C. W. Chu, J. Ouyang, J. H. Tseng and Y. Yang, Adv. Mater. 17, 1440 (2005).

    Article  Google Scholar 

  9. [9]

    R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner and Y. Yang, Nano Lett. 5, 1077 (2005).

    Article  ADS  Google Scholar 

  10. [10]

    R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan and Y. Yang, Nat. Nanotechnol. 1, 72 (2006).

    Article  ADS  Google Scholar 

  11. [11]

    Y. Yang, J. Ouyang, L. Ma, R. J. H. Tseng and C. W. Chu, Adv. Funct. Mat. 16, 1001 (2006).

    Article  Google Scholar 

  12. [12]

    B. Cho, S. Song, Y. Ji, T-W. Kim and T. Lee, Adv. Funct. Mat. 12, 2806 (2011).

    Article  Google Scholar 

  13. [13]

    A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, M. E. Roberts, Y. Yang, F. Wudl and Z. Bao, Nature 444, 913 (2006).

    Article  ADS  Google Scholar 

  14. [14]

    J. Rivnay, L. H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega, S. Lu, T. J. Marks, A. Facchetti and A. Salleo, Nat. Mater. 8, 952 (2009).

    Article  ADS  Google Scholar 

  15. [15]

    Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulous, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J-L. Brédas, S. R. Marder, A. Kahn and B. Kippelen, Science 336, 327 (2012).

    Article  ADS  Google Scholar 

  16. [16]

    W. L. Kwan, R. J. Tseng, W. Wu, Q. Pei and Y. Yang, IEDM Technical Digest (2007), p. 237.

    Google Scholar 

  17. [17]

    T-W. Kim, H. Choi, S-H. Oh, M. Jo, G. Wang, B. Cho, D-Y. Kim, H. Hwang and T. Lee, Nanotechnol. 20, 025201 (2009).

    Article  ADS  Google Scholar 

  18. [18]

    S. H. Oh, S. I. Na, Y. C. Nah, D. Vak, S. S. Kim and D. Y. Kim, Org. Electron. 8, 773 (2007).

    Article  Google Scholar 

  19. [19]

    C. Kim, P. E. Burrows and S. R. Forrest, Science 288, 831 (2000).

    Article  ADS  Google Scholar 

  20. [20]

    C. Kim C, M. Shtein and S. R. Forrest, Appl. Phys. Lett. 8, 4051 (2002).

    Article  ADS  Google Scholar 

  21. [21]

    W. M. Lackowski, P. Ghosh and R. M. Crooks. J. Am. Chem. Soc. 121, 1419 (1999).

    Article  Google Scholar 

  22. [22]

    Y. L. Loo, R. L. Willett, K. W. Baldwin and J. A. Rogers, J. Am. Chem Soc. 124, 7654 (2002).

    Article  Google Scholar 

  23. [23]

    T-W. Kim, K. Lee, S-H. Oh, G. Wang, D-Y Kim, G-Y. Jung and T. Lee, Nanotechnol. 19, 405201 (2008).

    Article  Google Scholar 

  24. [24]

    J. J. Kim, B. Cho, K. S. Kim, T. Lee and G. Y. Jung, Adv. Mater. 23, 2104 (2011).

    Article  Google Scholar 

  25. [25]

    B. Cho, K. H. Nam, S. Song, Y. Ji, G-Y. Jung and T. Lee, Curr. Appl. Phys. 12, 940 (2012).

    Article  ADS  Google Scholar 

  26. [26]

    F. Verbakel, S. C. J. Meskers, R. A. J. Janssen, H. L. Gomes, M. Cölle, M. Büchel and D. M. de Leeuw, Appl. Phys. Lett. 91, 192103 (2007).

    Article  ADS  Google Scholar 

  27. [27]

    S. Pyo, L. Ma, J. He, Q. Xu, Y. Yang and Y. Gao, J. Appl. Phys. 98, 054303 (2005).

    Article  ADS  Google Scholar 

  28. [28]

    Y. Song, J. Jang, D. Yoo, S-H. Jung, S. Hong, J-K. Lee and T. Lee, Org. Electron. 17, 192 (2015).

    Article  Google Scholar 

  29. [29]

    A. Zakhidov, J-K. Lee, H. H. Fong, J. A. DeFranco, M. Chatzichristidi, P. G. Taylor, C. K. Ober and G. G. Malliaras, Adv. Mater. 20, 3481 (2008).

    Article  Google Scholar 

  30. [30]

    J-K. Lee, M. Chatzichristidi, A. A. Zakhidov, P. G. Taylor, J. A. DeFranco, H. S. Hwang, H. H. Fong, A. B. Holmes, G. G. Malliaras and C. K. Ober, J. Am. Chem. Soc. 130, 11564 (2008).

    Article  Google Scholar 

  31. [31]

    A. Zakhidov, J-K. Lee, J. A. DeFranco, H. H. Fong, P. G. Taylor, M. Chatzichristidi, C. K. Ober and G. G. Malliaras, Chem. Sci. 2, 1178 (2011).

    Article  Google Scholar 

  32. [32]

    Y. Ouyang, J-K. Lee, M. E. Krysak, J. Sha and C. K. Ober, J. Mater. Chem. 22, 5746 (2012).

    Article  Google Scholar 

  33. [33]

    J. Jang, Y. Song, H. Oh, D. Yoo, H. Lee, S. Hong, J-K. Lee and T. Lee, Appl. Phys. Lett. 104, 053301 (2014).

    Article  ADS  Google Scholar 

  34. [34]

    Y. Song, J. Jang, D. Yoo, S-H. Jung, H. Jeong, S. Hong, J-K. Lee and T. Lee, J. Nanosci. Nanotechnol. 15, 1 (2016).

    Google Scholar 

  35. [35]

    D. Yoo, Y. Song, J. Jang, W-T. Hwang, S-H. Jung, S. Hong, J-K. Lee and T. Lee, Org. Electron. 21, 198 (2015).

    Article  Google Scholar 

  36. [36]

    G. Ligorio, M. V. Nardi and N. Koch, Nano Lett. 17, 1149 (2017).

    Article  ADS  Google Scholar 

  37. [37]

    M. J. Brett and M. M. Hawkeye, Science 319, 1192 (2008).

    Article  Google Scholar 

  38. [38]

    M. M. Hawkeye and M. J. Brett, J. Vac. Sci. Technol. A 25, 1317 (2007).

    Article  Google Scholar 

  39. [39]

    Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan and W. Lu, Nat. Commun. 3, 732 (2012).

    Article  ADS  Google Scholar 

  40. [40]

    Z. M. Liao, C. Hou, H. Z. Zhang, D. S. Wang and D. P. Yu, Appl. Phys. Lett. 96, 203109 (2010).

    Article  ADS  Google Scholar 

  41. [41]

    X. Tian, L. Wang, J. Wei, S. Yang, W. Wang, Z. Xu and X. Bai, Nano Res. 7, 1065 (2014).

    Article  Google Scholar 

  42. [42]

    W. L. Kwan, B. Lei, Y. Shao, S. V. Prikhodko, N. Bodzin and Y. Yang, J. Appl. Phys. 105, 124516 (2009).

    Article  ADS  Google Scholar 

  43. [43]

    J. Chen and D. Ma, Appl. Phys. Lett. 87, 23505 (2005).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Takhee Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Yoo, D. & Lee, T. Miniaturization and Integration of Organic Resistive Memory Devices. J. Korean Phys. Soc. 73, 479–487 (2018).

Download citation


  • Organic Electronics
  • Organic memory
  • Device architecture
  • Device miniaturization
  • Device integration