Skip to main content
Log in

A Wide Dynamic Range NUC Algorithm for IRCS Systems

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Uniformity is a key feature of state-of-the-art infrared focal planed array (IRFPA) and infrared imaging system. Unlike traditional infrared telescope facility, a ground-based infrared radiant characteristics measurement system with an IRFPA not only provides a series of high signal-to-noise ratio (SNR) infrared image but also ensures the validity of radiant measurement data. Normally, a long integration time tends to produce a high SNR infrared image for infrared radiant characteristics radiometry system. In view of the variability of and uncertainty in the measured target’s energy, the operation of switching the integration time and attenuators usually guarantees the guality of the infrared radiation measurement data obtainted during the infrared radiant characteristics radiometry process. Non-uniformity correction (NUC) coefficients in a given integration time are often applied to a specified integration time. If the integration time is switched, the SNR for the infrared imaging will degenerate rapidly. Considering the effect of the SNR for the infrared image and the infrared radiant characteristics radiometry above, we propose a-wide-dynamic-range NUC algorithm. In addition, this essasy derives and establishes the mathematical modal of the algorithm in detail. Then, we conduct verification experiments by using a ground-based MWIR(Mid-wave Infared) radiant characteristics radiometry system with an Ø400 mm aperture. The experimental results obtained using the proposed algorithm and the traditional algorithm for different integration time are compared. The statistical data shows that the average non-uniformity for the proposed algorithm decreased from 0.77% to 0.21% at 2.5 ms and from 1.33% to 0.26% at 5.5 ms. The testing results demonstrate that the usage of suggested algorithm can improve infrared imaging quality and radiation measurement accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. Godoy et al., Applied Optics 47, 5894 (2008).

    Article  Google Scholar 

  2. U. Sakoglu et al., Proc. SPIE 5558, 69 (2004).

    Article  ADS  Google Scholar 

  3. Gutschwager et al., Appl. Opt. 54, 10599 (2015).

  4. V. F. Paz et al., Light Science & Applications 1, e36 (2012).

    Article  Google Scholar 

  5. A. F. Milton et al., Optical Engineering 24, 855 (1985).

    Article  ADS  Google Scholar 

  6. Y. Cao et al., Applied Optics 52, 6266 (2013).

    Article  ADS  Google Scholar 

  7. D. R. Pipa et al., IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society 21, 4758 (2012).

    Article  Google Scholar 

  8. E. Vera et al., Optics Letters 36, 352 (2011).

    Article  Google Scholar 

  9. M. J. Booth et al., Light Science & Applications 3, e165 (2014).

    Article  ADS  Google Scholar 

  10. C. Zuo et al. Optik - International Journal for Light and Electron Optics 123, 833 (2012).

    Article  Google Scholar 

  11. Jin et al. Infrared Physics & Technology 78, 1 (2016).

  12. M. Yan et al., Light Science & Applications, 6, e17076 (2016).

    Article  Google Scholar 

  13. N. Meitav et al. Light Science & Applications, 5, e16048 (2016).

    Article  Google Scholar 

  14. Sheng-Hui et al., J. Opt. Soc. Am. A Opt. Image Sci. Vis. 33, 938 (2016).

  15. C. Zuo et al., Optical Review 18, 197 (2011).

    Article  ADS  Google Scholar 

  16. M. Ochs et al., Infrared Physics & Technology, 53, 112 (2010).

    Article  ADS  Google Scholar 

  17. J. Zhang et al., Light Science & Applications 7, 17180 (2018).

    Article  ADS  Google Scholar 

  18. W. W. Hauswirth et al., Journal of Vision 9, 27 (2009).

    Article  Google Scholar 

  19. Z. Liu et al., Infrared Physics & Technology 76, 667 (2016).

    Article  ADS  Google Scholar 

  20. W. Qian et al., Applied Optics, 50, 1 (2011).

    Article  ADS  Google Scholar 

  21. C. C. Hou et al., Light Science & Applications 7, 17170 (2018).

    Article  ADS  Google Scholar 

  22. J. Zhao et al., Optics Communications 296, 47 (2013).

    Article  ADS  Google Scholar 

  23. H. X Zhou et al., Infrared Physics & Technology 53, 295 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, LH., He, FY., Chang, ST. et al. A Wide Dynamic Range NUC Algorithm for IRCS Systems. J. Korean Phys. Soc. 73, 1821–1826 (2018). https://doi.org/10.3938/jkps.73.1821

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.1821

Keywords

Navigation