Skip to main content
Log in

Gravitational Perturbation of Traversable Wormhole Spacetime and the Stability

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper, we study the gravitational perturbation of traversable wormhole spacetime, especially the Morris-Thorne wormhole spacetime, by using the linearized theory of gravity. We restrict our interest to the first order term and ignore the higher order terms. We assume that the perturbation is axisymmetric. We also assume that the time dependence follows the Fourier decomposition and the angular dependence is expressed in terms of the Legendre functions. As a result, we derive the gravitational perturbation equation of traversable wormhole in terms of a single linear second-order differential equation. As a consequence, we could analyze the unstability of the spacetime with the effective potentials. Furthermore, we consider the interaction between the external gravitational perturbation and the exotic matter, constituting traversable wormholes and its effect on the stability of traversable wormholes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. R. Ade et al. (Planck Collaboration), Astronomy and Astrophysics 571, 1 (2014).

    Google Scholar 

  2. A. Melchiorri, L. Mersini, C. J. Odman and M. Trodden, Phys. Rev. D 68, 043509 (2003).

    Article  ADS  Google Scholar 

  3. E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).

    Article  ADS  Google Scholar 

  4. M. S. Morris and K. S. Thorne, Am. J Phys. 56, 395 (1988).

    Article  ADS  Google Scholar 

  5. VIRGO, LIGP SCIENTIFIC collaborations, B. P. Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).

  6. VIRGO, LIGP SCIENTIFIC collaborations, B. P. Abbott et al. Phys. Rev. Lett. 116, 221101 (2016).

  7. R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793 (2011).

    Article  ADS  Google Scholar 

  8. K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel. 2, 2 (1999).

    Article  Google Scholar 

  9. R. A. Konoplya and C. Molina, Phys. Rev. D 71, 124009 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  10. J. P. S. Lemos, F. S. N. Lobo and S. Oliverira, Phys. Rev. D 68, 064004 (2003).

    Article  ADS  Google Scholar 

  11. V. Cardoso and J. P. S. Lemos, Phys. Rev. D 63, 124015 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  12. S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972).

    Article  ADS  Google Scholar 

  13. E. Berti and K. D. Kokkotas, Phys. Rev. D 67, 064020 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  14. S.-W. Kim, Nuovo Clim. 120B, 1235 (2005).

    ADS  Google Scholar 

  15. P. E. Kashargin and S. V. Sushkov, Phys. Rev. D 78, 064071 (2008).

    Article  ADS  Google Scholar 

  16. K. A. Bronnikov, R. A. Konoplya and A. Zhidenko, Phys. Rev. D. D 86, 024028 (2012).

    Article  ADS  Google Scholar 

  17. A. A. Abdujabbarov and B. J. Ahmedov, Astrophys. Space Sci. 321, 225 (2009).

    Article  ADS  Google Scholar 

  18. R. A. Konoplya and A. Zhidenko, J. Cos. Astropart. Phys. 12, 043 (2016).

    Article  ADS  Google Scholar 

  19. Y. Kang and S.-W. Kim, J. Korean Phys. Soc. 65, 913 (2014).

    Article  ADS  Google Scholar 

  20. S. Chandrasekhar, Proc. Roy. Soc. Lond. A 343, 289 (1975).

    Article  ADS  Google Scholar 

  21. J. L. Friedman, Proc. Roy. Soc. Lond. A 335, 163 (1973).

    Article  ADS  Google Scholar 

  22. S. Sushkov, Phys. Rev. D 71, 043520 (2005).

    Article  ADS  Google Scholar 

  23. M. Sullivan et al., Astrophys. J. 737, 102 (2011).

    Article  ADS  Google Scholar 

  24. F. S. N. Lobo, Phys. Rev. D 71, 084011 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  25. E. Komatsu, Astrophys. J. Suppl. 192, 18 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Kim, SW. Gravitational Perturbation of Traversable Wormhole Spacetime and the Stability. J. Korean Phys. Soc. 73, 1800–1807 (2018). https://doi.org/10.3938/jkps.73.1800

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.1800

Keywords

Navigation