Skip to main content
Log in

Heavy Baryons in a Pion Mean-Field Approach: A Brief Review

  • Review Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We review in this paper a series of recent works on properties of singly heavy baryons, based on a pion mean-field approach. In the limit of an infinitely heavy-quark mass, the heavy quark inside a heavy baryon can be regarded as a static color source. In this limit, a heavy baryon can be viewed as Nc − 1 valence quarks bound by the pion mean fields which are created self-consistently by the presence of the Nc valence quarks. We show that this mean-field approach can successfully describe the masses and the magnetic moments of the lowest-lying singly heavy baryons, using all the parameters fixed in the light-baryon sector except for the hyperfine spin-spin interactions. We also review a recent work on identifying the newly found excited Ωc baryons reported by the LHCb Collaboration. We discuss possible scenarios to identify them. Finally, we give a future perspective on this pion mean-field approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Isgur and M. B. Wise, Phys. Lett. B 232, 113 (1989).

    Article  ADS  Google Scholar 

  2. N. Isgur and M. B. Wise, Phys. Rev. Lett. 66, 1130 (1991).

    Article  ADS  Google Scholar 

  3. H. Georgi, Phys. Lett. B 240, 447 (1990).

    Article  ADS  Google Scholar 

  4. A. V. Manohar and M. B. Wise, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10, 1 (2000).

    Google Scholar 

  5. T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 99, 202001 (2007).

    Article  ADS  Google Scholar 

  6. S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. Lett. 108, 252002 (2012).

    Article  ADS  Google Scholar 

  7. V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 101, 232002 (2008).

    Article  ADS  Google Scholar 

  8. T. Kuhr [CDF and D0 Collaborations], arXiv:1109.1944 [hep-ex].

  9. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 109, 172003 (2012).

    Article  ADS  Google Scholar 

  10. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 110, 182001 (2013).

    Article  ADS  Google Scholar 

  11. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 113, 032001 (2014).

    Article  ADS  Google Scholar 

  12. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 113, 242002 (2014).

    Article  ADS  Google Scholar 

  13. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 114, 062004 (2015).

    Article  ADS  Google Scholar 

  14. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 115, 072001 (2015) [arXiv:1507.03414 [hep-ex]].

    Article  ADS  Google Scholar 

  15. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 117, 082002 (2016) [arXiv:1604.05708 [hep-ex]].

    Article  ADS  Google Scholar 

  16. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 117, 082003 (2016) Addendum: [Phys. Rev. Lett. 117, 109902 (2016)] Addendum: [Phys. Rev. Lett. 118, 119901 (2017)] [arXiv:1606.06999 [hep-ex]].

    Article  ADS  Google Scholar 

  17. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 118, 022003 (2017) [arXiv:1606.07895 [hep-ex]].

    Article  ADS  Google Scholar 

  18. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 118, 182001 (2017).

    Article  ADS  Google Scholar 

  19. J. Yelton et al. [Belle Collaboration], Phys. Rev. D 97, 051102 (2018) [arXiv:1711.07927 [hep-ex]].

    Article  ADS  Google Scholar 

  20. E. Witten, Nucl. Phys. B 160, 57 (1979).

    Article  ADS  Google Scholar 

  21. E. Witten, Nucl. Phys. B 223, 422 (1983) and Nucl. Phys. B 223, 433 (1983).

    Article  ADS  Google Scholar 

  22. W. Pauli and S. M. Dancoff, Phys. Rev. 62, 85 (1942).

    Article  ADS  MathSciNet  Google Scholar 

  23. T. H. R. Skyrme, Proc. Roy. Soc. Lond. A 260, 127 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Coleman, Aspects of Symmetry (Cambridge University Press, New York, 1985).

    Book  MATH  Google Scholar 

  25. D. Diakonov, V. Y. Petrov and P. V. Pobylitsa, Nucl. Phys. B 306, 809 (1988).

    Article  ADS  Google Scholar 

  26. C. V. Christov, A. Blotz, H-Ch. Kim, P. Pobylitsa, T. Watabe, T. Meissner, E. Ruiz Arriola and K. Goeke, Prog. Part. Nucl. Phys. 37, 91 (1996).

    Article  ADS  Google Scholar 

  27. D. Diakonov, hep-ph/9802298.

  28. D. Diakonov and V. Y. Petrov, Nucl. Phys. B 245, 259 (1984).

    Article  ADS  Google Scholar 

  29. D. Diakonov and V. Y. Petrov, Nucl. Phys. B 272, 457 (1986).

    Article  ADS  Google Scholar 

  30. E. Guadagnini, Nucl. Phys. B 236, 35 (1984).

    Article  ADS  Google Scholar 

  31. P. O. Mazur, M. A. Nowak and M. Praszałowicz, Phys. Lett. 147B, 137 (1984).

    Article  ADS  Google Scholar 

  32. S. Jain and S. R. Wadia, Nucl. Phys. B 258, 713 (1985).

    Article  ADS  Google Scholar 

  33. A. Blotz, D. Diakonov, K. Goeke, N. W. Park, V. Petrov and P. V. Pobylitsa, Nucl. Phys. A 555, 765 (1993).

    Article  ADS  Google Scholar 

  34. G. S. Yang and H-Ch. Kim, Prog. Theor. Phys. 128, 397 (2012) [arXiv:1010.3792 [hep-ph]].

    Article  ADS  Google Scholar 

  35. H-Ch. Kim, A. Blotz, M. V. Polyakov and K. Goeke, Phys. Rev. D 53, 4013 (1996).

    Article  ADS  Google Scholar 

  36. A. Silva, H-Ch. Kim and K. Goeke, Phys. Rev. D 65, 014016 (2002) Erratum: [Phys. Rev. D 66, 039902 (2002)].

    Article  ADS  Google Scholar 

  37. T. Ledwig, A. Silva and H-Ch. Kim, Phys. Rev. D 82, 034022 (2010).

    Article  ADS  Google Scholar 

  38. H-Ch. Kim, M. V. Polyakov, A. Blotz and K. Goeke, Nucl. Phys. A 598, 379 (1996) [hep-ph/9506422].

    Article  ADS  Google Scholar 

  39. M. Wakamatsu and N. Kaya, Prog. Theor. Phys. 95, 767 (1996).

    Article  ADS  Google Scholar 

  40. H-Ch. Kim, M. Praszalowicz and K. Goeke, Phys. Rev. D 57, 2859 (1998) [hep-ph/9706531].

    Article  ADS  Google Scholar 

  41. H-Ch. Kim, M. Polyakov, M. Praszalowicz, G. S. Yang and K. Goeke, Phys. Rev. D 71, 094023 (2005) [hepph/0503237].

    Article  ADS  Google Scholar 

  42. T. Ledwig, A. Silva, H-Ch. Kim and K. Goeke, JHEP 0807, 132 (2008).

    Article  ADS  Google Scholar 

  43. G. S. Yang and H-Ch. Kim, Phys. Rev. C 92, 035206 (2015) [arXiv:1504.04453 [hep-ph]].

    Article  ADS  Google Scholar 

  44. D. Diakonov, V. Petrov, P. Pobylitsa, M. V. Polyakov and C. Weiss, Nucl. Phys. B 480, 341 (1996).

    Article  ADS  Google Scholar 

  45. M. Wakamatsu, Phys. Rev. D 67, 034005 (2003).

    Article  ADS  Google Scholar 

  46. H-Ch. Kim, M. V. Polyakov and K. Goeke, Phys. Rev. D 53, 4715R (1996) [hep-ph/9509283].

    Article  ADS  Google Scholar 

  47. H-Ch. Kim, M. V. Polyakov and K. Goeke, Phys. Lett. B 387, 577 (1996) [hep-ph/9604442].

    Article  ADS  Google Scholar 

  48. P. Schweitzer, D. Urbano, M. V. Polyakov, C. Weiss, P. V. Pobylitsa and K. Goeke, Phys. Rev. D 64, 034013 (2001) [hep-ph/0101300].

    Article  ADS  Google Scholar 

  49. K. Goeke, M. V. Polyakov and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001) [hep-ph/0106012].

    Article  ADS  Google Scholar 

  50. Gh-S. Yang, H-Ch. Kim, M. V. Polyakov and M. Praszałowicz, Phys. Rev. D 94, 071502 (2016).

    Article  ADS  Google Scholar 

  51. D. Diakonov, arXiv:1003.2157 [hep-ph].

  52. J. Y. Kim, H-Ch. Kim and G. S. Yang, arXiv:1801.09405 [hep-ph].

  53. G. S. Yang and H-Ch. Kim, arXiv:1802.05416 [hep-ph].

  54. J. Y. Kim and H-Ch. Kim, arXiv:1803.04069 [hep-ph].

  55. H-Ch. Kim, M. V. Polyakov and M. Praszałowicz, Phys. Rev. D 96, 014009 (2017) Addendum: [Phys. Rev. D 96, 039902 (2017)] [arXiv:1704.04082 [hep-ph]].

    Article  ADS  Google Scholar 

  56. H-Ch. Kim, M. V. Polyakov, M. Praszalowicz and G. S. Yang, Phys. Rev. D 96, 094021 (2017) Erratum: [Phys. Rev. D 97, 039901 (2018)] [arXiv:1709.04927 [hepph]].

    Article  ADS  Google Scholar 

  57. G. S. Yang, H-Ch. Kim and M. V. Polyakov, Phys. Lett. B 695, 214 (2011).

    Article  ADS  Google Scholar 

  58. Ya.B. Zeldovich and A.D. Sakharov, Yad. Fiz 4, 395 (1966); Sov. J. Nucl. Phys. 4, 283 (1967); Acta Phys. Hung. 22, 153 (1967).

    Google Scholar 

  59. R. Aaij et al. [LHCb Collaboration], arXiv:1707.01621 [hep-ex].

  60. C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016) and 2017 update.

    ADS  Google Scholar 

  61. M. Praszalowicz, T. Watabe and K. Goeke, Nucl. Phys. A 647, 49 (1999) [hep-ph/9806431].

    Article  ADS  Google Scholar 

  62. M. C. Banuls, I. Scimemi, J. Bernabeu, V. Gimenez and A. Pich, Phys. Rev. D 61, 074007 (2000) [hepph/9905488].

    Article  ADS  Google Scholar 

  63. S. R. Coleman and S. L. Glashow, Phys. Rev. Lett. 6, 423 (1961).

    Article  ADS  Google Scholar 

  64. D. I. Diakonov, V. Y. Petrov and A. A. Vladimirov, Theor. Math. Phys. 170, 114 (2012) [Teor. Mat. Fiz. 170, 140 (2012)].

    Article  Google Scholar 

  65. D. Diakonov, V. Petrov and A. A. Vladimirov, Phys. Rev. D 88, 074030 (2013) [arXiv:1308.0947 [hep-ph]].

    Article  ADS  Google Scholar 

  66. M. Karliner and J. L. Rosner, Phys. Rev. D 95, 114012 (2017) [arXiv:1703.07774 [hep-ph]].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Chul Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HC. Heavy Baryons in a Pion Mean-Field Approach: A Brief Review. J. Korean Phys. Soc. 73, 165–178 (2018). https://doi.org/10.3938/jkps.73.165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.165

Keywords

Navigation