Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 10, pp 1577–1583 | Cite as

Development of a Method for Improving the Electric Field Distribution in Patients Undergoing Tumor-Treating Fields Therapy

  • Jiwon Sung
  • Jaehyeon Seo
  • Yunhui Jo
  • Myonggeun YoonEmail author
  • Sang-Gu Hwang
  • Eun Ho Kim
Article
  • 23 Downloads

Abstract

Tumor-treating fields therapy involves placing pads onto the patient’s skin to create a low-intensity (1 - 3 V/cm), intermediate frequency (100 - 300 kHz), alternating electric field to treat cancerous tumors. This new treatment modality has been approved by the Food and Drug Administration in the USA to treat patients with both newly diagnosed and recurrent glioblastoma. To deliver the prescribed electric field intensity to the tumor while minimizing exposure of organs at risk, we developed an optimization method for the electric field distribution in the body and compared the electric field distribution in the body before and after application of this optimization algorithm. To determine the electric field distribution in the body before optimization, we applied the same electric potential to all pairs of electric pads located on opposite sides of models. We subsequently adjusted the intensity of the electric field to each pair of pads to optimize the electric field distribution in the body, resulting in the prescribed electric field intensity to the tumor while minimizing electric fields at organs at risk. A comparison of the electric field distribution within the body before and after optimization showed that application of the optimization algorithm delivered a therapeutically effective electric field to the tumor while minimizing the average and the maximum field strength applied to organs at risk. Use of this optimization algorithm when planning tumor-treating fields therapy should maintain or increase the intensity of the electric field applied to the tumor while minimizing the intensity of the electric field applied to organs at risk. This would enhance the effectiveness of tumor-treating fields therapy while reducing dangerous side effects.

Keywords

Tumor-treating fields Alternating electric field Optimization algorithm Cancer therapy Electric field calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. M. Davies, U. Weinberg and Y. Palti, Ann. Ny. Acad. Sci. 1291, 86 (2013).ADSCrossRefGoogle Scholar
  2. [2]
    M. Pless and U. Weinberg, Expert Opin. Inv. Drug 20, 1099 (2011).CrossRefGoogle Scholar
  3. [3]
    S. Kesari, Z. Ram and E. F. T. Investigators, CNS Oncol. 6, 185 (2017).CrossRefGoogle Scholar
  4. [4]
    E. H. Kim, Y. J. Kim, H. S. Song, Y. K. Jeong, J. Y. Lee, J. Sung, S. H. Yoo and M. Yoon, Oncotarget 7, 62267 (2016).Google Scholar
  5. [5]
    R. Stupp et al., Jama-J. Am. Med. Assoc. 314, 2535 (2015).CrossRefGoogle Scholar
  6. [6]
    C. Wenger, Z. Bomzon, R. Salvador, P. J. Basser and P. C. Miranda, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016, 5664 (2016).Google Scholar
  7. [7]
    F. Rivera, J. Gallego, C. Guillen, M. Benavides, J. A. Lopez-Martin and M. Kueng, J. Clin. Oncol. 34, 269 (2016).CrossRefGoogle Scholar
  8. [8]
    M. Pless, C. Droege, R. von Moos, M. Salzberg and D. Betticher, Lung Cancer 81, 445 (2013).CrossRefGoogle Scholar
  9. [9]
    N. Hanna et al., J. Clin. Oncol. 22, 1589 (2004).CrossRefGoogle Scholar
  10. [10]
    D. D. Von Hoff et al., New. Engl. J. Med. 369, 1691 (2013).CrossRefGoogle Scholar
  11. [11]
    I. Vergote, R. von Moos, L. Manso and C. Sessa, J. Clin. Oncol. 35, 5580 (2017).CrossRefGoogle Scholar
  12. [12]
    A. M. Poveda, F. Selle, F. Hilpert, A. Reuss, A. Savarese, I. Vergote, P. Witteveen, A. Bamias, N. Scotto, L. Mitchell and E. Pujade-Lauraine, J. Clin. Oncol. 33, 3836 (2015).CrossRefGoogle Scholar
  13. [13]
    E. D. Kirson, Z. Gurvich, R. Schneiderman, E. Dekel, A. Itzhaki, Y. Wasserman, R. Schatzberger and Y. Palti, Cancer Res. 64, 3288 (2004).CrossRefGoogle Scholar
  14. [14]
    M. Silginer, M. Weller, R. Stupp and P. Roth, Cell Death Dis. 8, e2753 (2017).CrossRefGoogle Scholar
  15. [15]
    E. D. Kirson et al., P. Natl. Acad. Sci. USA 104, 10152 (2007).ADSCrossRefGoogle Scholar
  16. [16]
    H. Jeong, J. Sung, S. I. Oh, S. Jeong, E. K. Koh, S. Hong and M. Yoon, Appl. Phys. Lett. 105, 203703 (2014).CrossRefGoogle Scholar
  17. [17]
    A. Chaudhry, L. Benson, M. Varshaver, O. Farber, U. Weinberg, E. Kirson and Y. Palti, World J. Surg. Oncol. 13, 316 (2015).CrossRefGoogle Scholar
  18. [18]
    J. Connelly, A. Hormigo, N. Mohilie, J. Hu, A. Chaudhry and N. Blondin, Bmc Cancer 16, 842 (2016).CrossRefGoogle Scholar
  19. [19]
    P. C. Miranda, A. Mekonnen, R. Salvador and P. J. Basser, Phys. Med. Biol. 59, 4137 (2014).CrossRefGoogle Scholar
  20. [20]
    C. Wenger, R. Salvador, P. J. Basser and P. C. Miranda, Int. J. Radiat. Oncol. 94, 1137 (2016).CrossRefGoogle Scholar
  21. [21]
    M. Macedo, C. Wenger, R. Salvador, S. R. Fernandes and P. C. Miranda, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016, 5168 (2016).Google Scholar
  22. [22]
    Q. W. Wu and R. Mohan, Med. Phys. 27, 701 (2000).CrossRefGoogle Scholar
  23. [23]
    X. D. Zhang, H. Liu, X. C. Wang, L. Dong, Q. W. Wu and R. Mohan, Med. Phys. 31, 1141 (2004).CrossRefGoogle Scholar
  24. [24]
    K. H. Chang, S. Lee, Y. J. Cao, J. B. Shim, J. E. Lee, J. A. Lee, D. S. Yang, Y. J. Park, W. S. Yoon, C. Y. Kim, S. J. Cho, S. H. Lee, W. C. Kim, C. K. Min, K. H. Cho and H. D. Huh, J. Korean Phys. Soc. 64, 1047 (2014).ADSCrossRefGoogle Scholar
  25. [25]
    L. Fenkell, I. Kaminsky, S. Breen, S. Huang, M. Van Prooijen and J. Ringash, Radiother. Oncol. 89, 287 (2008).CrossRefGoogle Scholar
  26. [26]
    L. K. Schubert, V. Gondi, E. Sengbusch, D. C. Westerly, E. T. Soisson, B. R. Paliwal, T. R. Mackie, M. P. Mehta, R. R. Patel, W. A. Tome and G. M. Cannon, Radiother. Oncol. 100, 241 (2011).CrossRefGoogle Scholar
  27. [27]
    A. Michalski, J. Atyeo, J. Cox, M. Rinks, M. Morgia and G. Lamoury, Med. Dosim. 39, 163 (2014).CrossRefGoogle Scholar
  28. [28]
    C. Gabriel, AL/OE-TR-1996-0004 (1996).Google Scholar
  29. [29]
    C. Gabriel, S. Gabriel and E. Corthout, Phys. Med. Biol. 41, 2231 (1996).CrossRefGoogle Scholar
  30. [30]
    M. Gen and R. Cheng, Genetic algorithms and engineering optimization (John Wiley & Sons, 2000), Vol. 7.Google Scholar
  31. [31]
    Y. J. Li, D. Z. Yao, J. Yao and W. F. Chen, Phys. Med. Biol. 50, 3491 (2005).CrossRefGoogle Scholar
  32. [32]
    X. Wu and Y. Zhu, Phys. Med. Biol. 46, 1085 (2001).CrossRefGoogle Scholar
  33. [33]
    J. Bang and S. Yoo, J. Korean Phys. Soc. 65, 2001 (2014).ADSCrossRefGoogle Scholar
  34. [34]
    M. Peszynska-Piorun, J. Malicki and W. Golusinski, Radiol. Oncol. 46, 328 (2012).CrossRefGoogle Scholar
  35. [35]
    E. K. Koh, J. Seo, T. S. Baek, E. J. Chung, M. Yoon and H. H. Lee, J. Korean Phys. Soc. 63, 97 (2013).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Jiwon Sung
    • 1
  • Jaehyeon Seo
    • 1
  • Yunhui Jo
    • 1
  • Myonggeun Yoon
    • 1
    Email author
  • Sang-Gu Hwang
    • 2
  • Eun Ho Kim
    • 2
  1. 1.Department of Bio-convergence EngineeringKorea UniversitySeoulKorea
  2. 2.Korea Institute of Radiological and Medical SciencesSeoulKorea

Personalised recommendations