Skip to main content
Log in

Lattice Thermal Conductivity Calculation of Sb2Te3 using Molecular Dynamics Simulations

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study lattice thermal conductivity of Sb2Te3 using molecular dynamics simulations. The interatomic potentials are fitted to reproduce total energy and elastic constants, and phonon properties calculated using the potentials are in reasonable agreement with first-principles calculations and experimental data. Our calculated lattice thermal conductivities of Sb2Te3 decrease with temperature from 150 K to 500 K. The in-plane lattice thermal conductivity of Sb2Te3 is higher than cross-plane lattice thermal conductivity of Sb2Te3, as in the case of Bi2Te3, which is consistent with the anisotropy of the elastic constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B-L. Huang and M. Kaviany, Phys. Rev. B 77, 125209 (2008).

    Article  ADS  Google Scholar 

  2. B. Qiu and X. Ruan, Phys. Rev. B 80, 165203 (2009).

    Article  ADS  Google Scholar 

  3. N. A. Katcho, N. Mingo and D. A. Broido, Phys. Rev. B 85, 115208 (2012).

    Article  ADS  Google Scholar 

  4. D. Campi, L. Paulatto, G. Fugallo, F. Mauri and M. Bernasconi, Phys. Rev. B 95, 024311 (2017).

    Article  ADS  Google Scholar 

  5. S. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  6. J. D. Gale, JCS Faraday Trans. 93, 629 (1997).

    Article  Google Scholar 

  7. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  8. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  9. A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).

    Article  Google Scholar 

  10. T. L. Anderson and H. B. Krause, Acta Cryst. B 30, 1307 (1974).

    Article  Google Scholar 

  11. F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).

    Article  ADS  Google Scholar 

  12. Non-Tetrahedrally Bonded Elements and Binary Compounds I, edited by O. Madelung, U. Rössler and M. Schulz, Landolt-Börnstein - Group III Condensed Matter, Vol. 41C (Springer-Verlag, Heidelberg, 1998).

  13. H. Rauh, R. Geick, H. Köhler, N. Nücker and N. Lehner, J. Phys. C: Solid State Phys., 14, 2705 (1981).

    Article  ADS  Google Scholar 

  14. D. Bessas, I. Sergueev, H-C. Wille, J. Perbon, D. Ebling and R. P. Hermann, Phys. Rev. B 86, 224301 (2012).

    Article  ADS  Google Scholar 

  15. H. J. Goldsmid, J. Appl. Phys. 32, 2198 (1961).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Gui Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, I., Yoon, YG. Lattice Thermal Conductivity Calculation of Sb2Te3 using Molecular Dynamics Simulations. J. Korean Phys. Soc. 73, 1541–1545 (2018). https://doi.org/10.3938/jkps.73.1541

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.1541

Keywords

Navigation