Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 2, pp 152–164 | Cite as

Recent Advances of Percolation Theory in Complex Networks

  • Deokjae Lee
  • B. KahngEmail author
  • Y. S. Cho
  • K.-I. Goh
  • D.-S. Lee
Review Articles
Part of the following topical collections:
  1. JKPS 50th Anniversary Reviews

Abstract

During the past two decades, percolation has long served as a basic paradigm for network resilience, community formation and so on in complex systems. While the percolation transition is known as one of the most robust continuous transitions, the percolation transitions occurring in complex systems are often of different types such as discontinuous, hybrid, and infinite-order phase transitions. Thus, percolation has received considerable attention in network science community. Here we present a very brief review of percolation theory recently developed, which includes those types of phase transitions, critical phenomena, and finite-size scaling theory. Moreover, we discuss potential applications of theoretical results and several open questions including universal behaviors.

Keywords

Phase transition Percolation Discontinuous transition Hybrid phase transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Ziemelis and L. Allen, Nature (London) 410, 241 (2001).Google Scholar
  2. [2]
    R. Gallagher and T. Appenzeller, Science 284, 87 (1999).ADSGoogle Scholar
  3. [3]
    G. Parisi, Physica A (Amsterdam) 263, 557 (1999).ADSGoogle Scholar
  4. [4]
    J. P. Sethna, K. A. Dahmen and C. R. Myers, Nature (London) 410, 242 (2001).ADSGoogle Scholar
  5. [5]
    H. E. Stanley et al., Proc. Natl. Acad. Sci. U.S.A. 99, 2561 (2002).ADSGoogle Scholar
  6. [6]
    M. Buchanan, Nature (London) 419, 787 (2002).ADSGoogle Scholar
  7. [7]
    D. J. Watts and S. H. Strogatz, Nature (London) 393, 440 (1998).ADSGoogle Scholar
  8. [8]
    A-L. Barabási and R. Albert, Science 286, 509 (1999).ADSMathSciNetGoogle Scholar
  9. [9]
    R. Albert and A-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).ADSMathSciNetGoogle Scholar
  10. [10]
    S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079 (2002).ADSGoogle Scholar
  11. [11]
    M. E. J. Newman, SIAM Rev. 45, 167 (2003).ADSMathSciNetGoogle Scholar
  12. [12]
    P. Erdős and A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960).Google Scholar
  13. [13]
    R. Albert, H. Jeong and A-L. Barabási, Nature 401, 130 (1999).ADSGoogle Scholar
  14. [14]
    M. Faloutsos, P. Faloutsos and C. Faloutsos, Comput. Commun. Rev. 29, 251 (1999).Google Scholar
  15. [15]
    J-H. Kim, K-I. Goh, B. Kahng and D. Kim, Phys. Rev. Lett. 91, 058701 (2003).ADSGoogle Scholar
  16. [16]
    R. Albert, H. Jeong and A. L. Barabsi, Nature 406, 378 (2000).ADSGoogle Scholar
  17. [17]
    R. Cohen, K. Erez, D. ben-Avraham and S. Havlin, Phys. Rev. Lett. 85, 4626 (2000).ADSGoogle Scholar
  18. [18]
    P. L. Krapivsky, S. Redner and F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000).ADSGoogle Scholar
  19. [19]
    S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000).ADSGoogle Scholar
  20. [20]
    D-S. Lee, K-I. Goh, B. Kahng and D. Kim, Nucl. Phys. B. 696, 351 (2004).ADSGoogle Scholar
  21. [21]
    S. Boccalettia, V. Latora, Y. Moreno, M. Chavez and D-U. Hwang, Phys. Rep. 424, 175 (2006).ADSMathSciNetGoogle Scholar
  22. [22]
    R. Cohen and S. Havlin, Phys. Rev. Lett. 90, 058701 (2003).ADSGoogle Scholar
  23. [23]
    M. Molloy and B. Reed, Random Struct. Algorithms 6, 161 (1995).Google Scholar
  24. [24]
    M. Molloy and B. Reed, Combinatorics, Probab. Comput. 7, 295 (1998).MathSciNetGoogle Scholar
  25. [25]
    K-I. Goh, B. Kahng and D. Kim, Phys. Rev. Lett. 87, 278701 (2001).Google Scholar
  26. [26]
    F. Chung and L. Lu, Annals Combinatorics 6, 125 (2002).MathSciNetGoogle Scholar
  27. [27]
    S. R. Broadbent and J. M. Hammersley, Cambridge Philos. Soc. 53, 629 (1957).ADSGoogle Scholar
  28. [28]
    P. J. Flory, J. Am. Chem. Soc. 63, 3083 (1941).Google Scholar
  29. [29]
    P. J. Flory, J. Am. Chem. Soc. 63, 3091 (1941).Google Scholar
  30. [30]
    P. J. Flory, J. Am. Chem. Soc. 63, 3096 (1941).Google Scholar
  31. [31]
    J. D. Murray, Mathematical Biology, 3rd edn. (Springer, Berlin, 2005).zbMATHGoogle Scholar
  32. [32]
    D. S. McLachlan, M. Blaszkiewicz and R. E. Newnham, J. Am. Ceram. Soc. 73, 2187 (1990).Google Scholar
  33. [33]
    L. S. Schulman and P. E. Seiden, Science 233, 425 (1986).ADSGoogle Scholar
  34. [34]
    L. Bergqvist, O. Eriksson, J. Kudrnovský, V. Drchal, P. Korzhavyi and I. Turek Phys. Rev. Lett. 93, 137202 (2004).ADSGoogle Scholar
  35. [35]
    R. Albert, H. Jeong and A. L. Barabási, Nature 406, 378 (2000).ADSGoogle Scholar
  36. [36]
    F. Morone and H. A. Makse, Nature 524, 65 (2015).ADSGoogle Scholar
  37. [37]
    D. J. Watts, Proc. Natl. Acad. Sci. 99, 5766 (2002).ADSGoogle Scholar
  38. [38]
    J. Shao, S. Havlin and H. E. Stanley, Phys. Rev. Lett. 103, 018701 (2009).ADSGoogle Scholar
  39. [39]
    R. Degraeve, G. Groeseneken, R. Bellens, M. Depas and H. E. Maes Tech. Dig. 1995 Inter. Electron Dev. Meeting 863 (1995).Google Scholar
  40. [40]
    R. Degraeve et al., IEEE Trans. Electron Dev. 51, 1392 (2004).ADSGoogle Scholar
  41. [41]
    D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd edn. (Taylor, and Francis, London, 1994).zbMATHGoogle Scholar
  42. [42]
    M. E. Fisher and J. W. Essam, J. Math. Phys. 2, 609 (1961).ADSGoogle Scholar
  43. [43]
    M. E. Fisher, J. Math. Phys. 2, 620 (1961).ADSGoogle Scholar
  44. [44]
    P. W. Kasteleyn and C. M. Fortuin J. Phys. Soc. Jpn. (Suppl.) 26, 11 (1969).ADSGoogle Scholar
  45. [45]
    J. Berg and M. Lässig, Phys. Rev. Lett. 89, 228701 (2002).ADSGoogle Scholar
  46. [46]
    M. Baiesi and S. S. Manna, Phys. Rev. E 68, 047103 (2003).ADSGoogle Scholar
  47. [47]
    Z. Burda, J. D. Correia and A. Krzywicki, Phys. Rev. E 64, 046118 (2001).ADSGoogle Scholar
  48. [48]
    S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Nucl. Phys. B 666, 396 (2003).ADSGoogle Scholar
  49. [49]
    I. Farkas, I. Derenyi, G. Palla and T. Viscek, Lecture notes in Physics: Networks: structure, dynamics, and function, edited by E. Ben-Naim, H. Frauenfelder and Z. Toroczkai (Springer, 2004).Google Scholar
  50. [50]
    M. E. J. Newman, S. H. Strogatz and D. J. Watts, Phys. Rev. E 64, 026118 (2001).ADSGoogle Scholar
  51. [51]
    G. Caldarelli, A. Capocci, P. De Los Rios and M. A. Mu˜noz, Phys. Rev. Lett. 89, 258702 (2002).ADSGoogle Scholar
  52. [52]
    B. Söderberg, Phys. Rev. E 66, 066121 (2002).ADSMathSciNetGoogle Scholar
  53. [53]
    W. Aiello, F. Chung and L. Lu, Exp. Math. 10, 53 (2001).Google Scholar
  54. [54]
    F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).ADSGoogle Scholar
  55. [55]
    R. Cohen, D. ben-Avraham and S. Havlin, Phys. Rev. E 66, 036113 (2002).ADSGoogle Scholar
  56. [56]
    D. Achlioptas, R. M. D’Souza and J. Spencer, Science 323, 1453 (2009).ADSMathSciNetGoogle Scholar
  57. [57]
    J. S. Andrade, H. J. Herrmann, A. A. Moreira and C. L. N. Oliveira, Phys. Rev. E 83, 031133 (2011).ADSGoogle Scholar
  58. [58]
    N. A. M. Araújo, J. S. Andrade, R. M. Ziff and H. J. Herrmann, Phys. Rev. Lett. 106, 095703 (2011).ADSGoogle Scholar
  59. [59]
    E. J. Friedman and A. S. Landsberg, Phys. Rev. Lett. 103, 255701 (2009).ADSGoogle Scholar
  60. [60]
    H. Hooyberghs and B. V. Schaeybroeck, Phys. Rev. E 83, 032101 (2011).ADSGoogle Scholar
  61. [61]
    Y. S. Cho and B. Kahng, Sci. Rep. 5, 11905 (2015).ADSGoogle Scholar
  62. [62]
    R. M. Ziff, Phys. Rev. Lett. 103, 045701 (2009).ADSGoogle Scholar
  63. [63]
    R. M. Ziff, Phys. Rev. E 82, 051105 (2010).ADSGoogle Scholar
  64. [64]
    Y. S. Cho, J. S. Kim, J. Park, B. Kahng and D. Kim Phys. Rev. Lett. 103, 135702 (2009).ADSGoogle Scholar
  65. [65]
    R. Filippo and F. Santo, Phys. Rev. Lett. 103, 168701 (2009).Google Scholar
  66. [66]
    S. Boccaletti et al., Phys. Rep. 424, 175 (2006).ADSMathSciNetGoogle Scholar
  67. [67]
    Y. S. Cho and B. Kahng, Phys. Rev. Lett. 107, 275703 (2011).Google Scholar
  68. [68]
    K. J. Schrenk, N. A. M. Araujo and H. J. Herrmann, Phys. Rev. E 84, 041136 (2011).ADSGoogle Scholar
  69. [69]
    K. J. Schrenk, A. Felder and S. Deflorin, Phys. Rev. E 85, 031103 (2012).ADSGoogle Scholar
  70. [70]
    R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes Phys. Rev. Lett. 105, 255701 (2010).ADSGoogle Scholar
  71. [71]
    O. Riordan and L. Warnke Science 333, 322 (2011).ADSGoogle Scholar
  72. [72]
    P. Grassberger, C. Christensen and G. Bizhani, Phys. Rev. Lett. 106, 225701 (2011).ADSGoogle Scholar
  73. [73]
    H. K. Lee, B. J. Kim and H. Park, Phys. Rev. E 84, 020101 (2011).ADSGoogle Scholar
  74. [74]
    Y. S. Cho, S. Hwang, H. J. Herrmann and B. Kahng Science 339, 1185 (2013).ADSGoogle Scholar
  75. [75]
    K. J. Schrenk, N. A. M. Araújo, J. S. Andrade Jr. and H. J. Herrmann, Sci. Rep. 2, 348 (2012).ADSGoogle Scholar
  76. [76]
    A. Bar and D. Mukamel, Phys. Rev. Lett. 112, 015701 (2014).ADSGoogle Scholar
  77. [77]
    S. Jang, J. S. Lee, S. Hwang and B. Kahng, Phys. Rev. E 92, 022110 (2015).ADSMathSciNetGoogle Scholar
  78. [78]
    K. Panagiotou, R. Sphöel, A. Steger and H. Thomas, Elec. Notes Discret. Math. 38, 699 (2011).Google Scholar
  79. [79]
    Y. S. Cho, J. S. Lee, H. J. Herrmann and B. Kahng, Phys. Rev. Lett. 116, 025701 (2016).ADSGoogle Scholar
  80. [80]
    K Choi, D. Lee, Y. S. Cho, J. C. Thiele, H. J. Herrmann and B. Kahng, Phys. Rev. E 96, 042148 (2017).ADSGoogle Scholar
  81. [81]
    J. Chalupa, P. L. Leath and G. R. Reich, J. Phys. C 12, L31 (1981).Google Scholar
  82. [82]
    S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, Phys. Rev. Lett. 96, 040601 (2006).ADSGoogle Scholar
  83. [83]
    A. V. Goltsev, S. N. Dorogovtsev and J. F. F. Mendes Phys. Rev. E 73, 056101 (2006).ADSMathSciNetGoogle Scholar
  84. [84]
    G. J. Baxter, S. N. Dorogovtsev, K. E. Lee, J. F. F. Mendes and A. V. Goltsev, Phys. Rev. X. 5, 031017 (2015).Google Scholar
  85. [85]
    P. S. Dodds and D. J. Watts, Phys. Rev. Lett. 92, 218701 (2004).ADSGoogle Scholar
  86. [86]
    H-K Janssen, M. Müller and O. Stenull, Phys. Rev. E 70, 026114 (2004).ADSMathSciNetGoogle Scholar
  87. [87]
    W. Cai, L. Chen, F. Ghanbarnejad and P. Grassberger, Nat. Phys. 11, 936 (2015).Google Scholar
  88. [88]
    N. A. M. Araújo and H. J. Herrmann, Phys. Rev. Lett. 105, 035701 (2010).ADSGoogle Scholar
  89. [89]
    S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley and S. Havlin, Nature 464, 1025 (2010).ADSGoogle Scholar
  90. [90]
    S-W Son, P. Grassberger and M. Paczuski, Phys. Rev. Lett. 107, 195702 (2011).ADSGoogle Scholar
  91. [91]
    G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, Phys. Rev. Lett. 109, 248701 (2012).ADSGoogle Scholar
  92. [92]
    A. Bashan, Y. Berezin, S. V. Buldyrev and S. Havlin, Nat. Phys. 9, 667 (2013).Google Scholar
  93. [93]
    D. Cellai, E. López, J. Zhou, J. P. Gleeson and G. Bianconi, Phys. Rev. E 88, 052811 (2013).ADSGoogle Scholar
  94. [94]
    D. Zhou, A. Bashan, R. Cohen, Y. Berezin, N. Shnerb and S. Havlin, Phys. Rev. E 90, 012803 (2014).ADSGoogle Scholar
  95. [95]
    S. D. S. Reis, Y. Hu, A. Babino, J. S. S. Andrade Jr., S. Canals, M. Sigman and H. A. Makse, Nat. Phys. 10, 762 (2014).Google Scholar
  96. [96]
    S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardenes, M. Romance, I. Sendi˜na-Nadal, Z. Wang and M. Zanin, Phys. Rep. 544, 1 (2014).ADSMathSciNetGoogle Scholar
  97. [97]
    M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno and M. A. Porter, J. Complex Netw. 2, 203 (2014).Google Scholar
  98. [98]
    J. M. Schwarz, A. J. Liu and L. Q. Chayes, EPL 73, 560 (2006).ADSGoogle Scholar
  99. [99]
    A. V. Goltsev, S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 73, 056101 (2006).ADSMathSciNetGoogle Scholar
  100. [100]
    D. Lee, S. Choi, M. Stippinger, J. Kertész and B. Kahng, Phys. Rev. E 93, 042109 (2016).ADSGoogle Scholar
  101. [101]
    D. Lee, M. Jo and B. Kahng, Phys. Rev. E 94, 062307 (2016).ADSGoogle Scholar
  102. [102]
    D. Lee, W. Choi, J. Kertész and B. Kahng, Sci. Rep. 7, 5723 (2017).ADSGoogle Scholar
  103. [103]
    W. Choi, D. Lee and B. Kahng, Phys. Rev. E 95, 022304 (2017).ADSGoogle Scholar
  104. [104]
    W. Choi, D. Lee and B. Kahng, Phys. Rev. E 95, 062115 (2017).ADSMathSciNetGoogle Scholar
  105. [105]
    E. Ben-Naim and P. L. Krapivsky, Phys. Rev. E 71, 026129 (2005).ADSGoogle Scholar
  106. [106]
    S-W. Son, G. Bizhani, C. Christensen, P. Grassberger and M. Paczuski, EPL 97, 16006 (2012).ADSGoogle Scholar
  107. [107]
    K-M. Lee, B. Min and K-I. Goh, Eur. Phys. J. B. 88, 28 (2015).ADSGoogle Scholar
  108. [108]
    R. Parshani, S.V. Buldyrev and S. Havlin, Phys. Rev. Lett. 105, 048701 (2010).ADSGoogle Scholar
  109. [109]
    K. Zhao and G. Bianconi, J. Stat. Mech. 2013, P05005 (2013).Google Scholar
  110. [110]
    F. Radicchi and G. Bianconi, Phys. Rev. X 7, 011013 (2017).Google Scholar
  111. [111]
    B. Min, S. D. Yi, K-M. Lee and K-I. Goh, Phys. Rev. E 89, 042811 (2014).ADSGoogle Scholar
  112. [112]
    Y. Hu, D. Zhou, R. Zhang, Z. Han, C. Rozenblat and S. Havlin, Phys. Rev. E 88, 052805 (2013).ADSGoogle Scholar
  113. [113]
    B. Min, S. Lee, K-M. Lee and K-I. Goh, Chaos Soliton Fractals 72, 49 (2015).ADSGoogle Scholar
  114. [114]
    B. Min and K-I. Goh, Phys. Rev. E 89, 040802(R) (2014).ADSGoogle Scholar
  115. [115]
    G. J. Baxter, S. N. Dorogovtsev, J. F. F. Mendes and D. Cellai, Phys. Rev. E 89, 042801 (2014).ADSGoogle Scholar
  116. [116]
    C. D. Brummit, K-M. Lee and K-I. Goh, Phys. Rev. E 85, 045102(R) (2012).ADSGoogle Scholar
  117. [117]
    K-M. Lee, C. D. Brummitt and K-I. Goh, Phys. Rev. E 90, 062816 (2014).ADSGoogle Scholar
  118. [118]
    E. A. Leicht and R. M. D’Souza, arXiv:0907.0894v1.Google Scholar
  119. [119]
    K-M. Lee, J. Y. Kim, W-k. Cho, K-I. Goh and I-M. Kim, New. J. Phys. 14, 033027 (2012).ADSGoogle Scholar
  120. [120]
    A. Hackett, D. Cellai, S. Gómez, A. Arenas and J. P. Gleeson, Phys. Rev. X 6, 021002 (2016).Google Scholar
  121. [121]
    M. De Domenico, A. Solé-Ribalta, S. Gómez and A. Arenas, Proc. Natl. Acad. Sci. USA 111, 8351 (2014).ADSMathSciNetGoogle Scholar
  122. [122]
    B. Min, S-H. Gwak, N. Lee and K-I. Goh, Sci. Rep. 6, 21392 (2016).ADSGoogle Scholar
  123. [123]
    A-L. Barabási, Network science (Cambridge University Press, Cambridge, 2016).zbMATHGoogle Scholar
  124. [124]
    D. Lee, K-I. Goh, B. Kahng and D. Kim, Phys. Rev. E 82, 026112 (2010).ADSGoogle Scholar
  125. [125]
    D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman and S. H. Strogatz, Phys. Rev. E 64, 041902 (2001).ADSGoogle Scholar
  126. [126]
    R. V. Solé, R. Pastor-Satorras, E. D. Smith and T. Kepler, Adv. Complex Syst. 05, 43 (2002).Google Scholar
  127. [127]
    A. Vázquez, A. Flammini, A. Maritan and A. Vespignani, ComPlexUs 1, 38 (2003).Google Scholar
  128. [128]
    J. Kim, P. L. Krapivsky, B. Kahng and S. Redner, Phys. Rev. E 66, 055101 (2002).ADSGoogle Scholar
  129. [129]
    J. M. Kosteritz, Rev. Mod. Phys. 89, 040501 (2017).ADSGoogle Scholar
  130. [130]
    J. M. Kosteritz and D. J. Thouless, J. Phys. C. 5, L124 (1972).ADSGoogle Scholar
  131. [131]
    F. Duncan and M. Haldane, Rev. Mod. Phys. 89, 040502 (2017).MathSciNetGoogle Scholar
  132. [132]
    S. M. Oh, S-W. Son and B. Kahng, Phys. Rev. E 93, 032316 (2016).ADSMathSciNetGoogle Scholar
  133. [133]
    S. M. Oh, S-W. Son and B. Kahng (unpublished).Google Scholar
  134. [134]
    R. M. D’Souza and J. Nagler, Nat. Phys. 11, 531 (2015).Google Scholar
  135. [135]
    N. Araújo, P. Grassberger, B. Kahng, K. J. Schrenk and R. M. Ziff, Eur. Phys. J.: Spec. Top. 223, 2307 (2014).Google Scholar
  136. [136]
    D. Lee, Y. S. Cho and B. Kahng, J. Stat. Mech. P124002 (2016).Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Deokjae Lee
    • 1
  • B. Kahng
    • 1
    Email author
  • Y. S. Cho
    • 2
  • K.-I. Goh
    • 3
  • D.-S. Lee
    • 4
  1. 1.CCSS, CTP and Department of Physics and AstronomySeoul National UniversitySeoulKorea
  2. 2.Department of PhysicsChonbuk National UniversityJeonjuKorea
  3. 3.Department of PhysicsKorea UniversitySeoulKorea
  4. 4.Department of PhysicsInha UniversityIncheonKorea

Personalised recommendations