Skip to main content
Log in

A Chemical Kinetic Model Including 54 Reactions for Modeling Air Nonequilibrium Inductively Coupled Plasmas

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The objective of the present study is the development of a comprehensive air chemical kinetic model that includes 11 species and 54 chemical reactions for the numerical investigation of air nonequilibrium inductively coupled plasmas. The two-dimensional, compressible Navier-Stokes equations coupled with the electromagnetic-field equations were employed to describe the fundamental characteristics of an inductive plasma. Dunn-Kangs 32 chemical-reaction model of air was reconstructed and used as a comparative model. The effects of the different chemical kinetic models on the flow field were analyzed and discussed at identical/different working pressures. The results theoretically indicate that no matter the working pressure is low or high, the use of the 54 chemical kinetic model presented in this study is a better choice for the numerical simulation of a nonequilibrium air ICP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Suzuki, K. Fujita, K. Ando and T. Sakai, J. Thermophys. Heat Tr. 22, 382 (2008).

    Article  Google Scholar 

  2. S. Miyatani, in Proceedings of the 58th Space Science and Technology Union Symposium, Nagasaki, Japan, 2014 (The Japan Society for Aeronautics and Space Sciences, 2014).

    Google Scholar 

  3. Y. Tanaka, T. Nagumo, H. Sakai, Y. Uesugi, Y. Sakai and K. Nakamura, J. Phys. D: Appl. Phys. 43, 265201 (2010).

    Article  ADS  Google Scholar 

  4. M. K. S. Tial, Y. Tanaka, Y. Maruyama, T. Tsuchiya, Y. Uesugi and T. Ishijima, Plasma Chem. Plasma Process. 37, 857 (2017).

    Article  Google Scholar 

  5. J. Mostaghimi, P. Proulx and M. I. Boulos, J. Appl. Phys. 61, 1753 (1987).

    Article  ADS  Google Scholar 

  6. S. B. Punjabi, N. K. Joshi, H. A. Mangalvedekar, B. K. Lande, A. K. Das and D. C. Kothari, Phys. Plasmas 19, 012108 (2012).

    Article  ADS  Google Scholar 

  7. J. H. Seo, J-M. Park and S. H. Hong, J. Korean Phys. Soc. 45, 94 (2009).

    Article  Google Scholar 

  8. V. I. Kolobov, G. J. Parker and W. N. G. Hitchon, Phys. Rev. E. 53, 1110 (1996).

    Article  ADS  Google Scholar 

  9. S. A. Vasil’eviskii and A. F. Kolesnikov, Fluid Dynamics 35, 769 (2000).

    Article  Google Scholar 

  10. S. W. Xue, P. Proulx and M. I. Boulos, J. Phys. D: Appl. Phys. 34, 1897 (2001).

    Article  ADS  Google Scholar 

  11. V. Colombo, E. Ghedini and P. Sanibondi, J. Phys. D: Appl. Phys. 43, 105202 (2010).

    Article  ADS  Google Scholar 

  12. G. Degrez, D. V. Abeele, P. Barbante and B. Bottin, Int. J. Numer. Method H 1414, 538 (2004).

    Article  Google Scholar 

  13. T. Sumi, K. Fujita, T. Kurotaki, T. Ito, M. Mizuno and K. Ishida, Trans. Japan Soc. Aero. Space Sci. 48, 40 (2005)

    Article  ADS  Google Scholar 

  14. M. G. Dunn and S-W. Kang, NASA Contractor Report, NASA-CR-2232, 1973.

  15. M. E. Morsli and P. Proulx, J. Phys. D: Appl. Phys. 40, 4810 (2007).

    Article  ADS  Google Scholar 

  16. C. Park, Nonequilibrium Hypersonic Aerothermodynamics (Wiley, New York, 1990).

    Google Scholar 

  17. C. Park, R. L. Jaffe and H. Partridge, J. Thermophys. Heat Trans. 15, 76 (2001).

    Article  Google Scholar 

  18. M. Yu, H. Kihara, K. Abe and Y. Takahashi, J. Korean Phys. Soc. 66, 1833 (2015).

    Article  ADS  Google Scholar 

  19. M. Yu, Y. Takahashi, H. Kihara, K. Abe, K. Yamada, T. Abe and S. Miyatani, Plasma Sci. Tech. 17, 749 (2015).

    Article  ADS  Google Scholar 

  20. Y. Takahashi, H. Kihara and K. Abe, J. Thermophys. Heat Trans. 24, 31 (2010).

    Article  Google Scholar 

  21. C. Park, J. Thermophys. Heat Trans. 7, 385 (1993).

    Article  ADS  Google Scholar 

  22. R. N. Gupta, J. M. Yos, R. A. Thompson and K-P. Lee, NASA Reference Publication 1232, Report No. NASA Reference Publication 1232, 1990.

  23. K. Kitamura, Comm. Comput. Phys. 10, 90 (2011).

    Article  ADS  Google Scholar 

  24. A. Jameson and S. Yoon, AIAA J. 25, 929 (1987).

    Article  ADS  Google Scholar 

  25. T. R. A. Bussing and E. M. Murman, AIAA J. 26, 1070 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  26. Mayuko Tanaka, Kazuhiko Yamada, Yusuke Takahashi, Minghao Yu and A. Tezuka, in Proceedings of the 61th Space Science and Technology Union Symposium, Niigata, Japan, 2017 (The Japan Society for Aeronautics and Space Sciences, 2017).

    Google Scholar 

  27. M. Capitelli, D. Bruce and A. Laricchiuta, Fundamental aspects of plasma chemical physics (Springer, New York, Heidelberg, Dordrecht, London, 2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Wang, W., Yao, J. et al. A Chemical Kinetic Model Including 54 Reactions for Modeling Air Nonequilibrium Inductively Coupled Plasmas. J. Korean Phys. Soc. 73, 1519–1528 (2018). https://doi.org/10.3938/jkps.73.1519

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.1519

Keywords

Navigation