Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 838–840 | Cite as

1H Nuclear Magnetic Resonance Study of an Incommensurate-Commensurate Phase Transition in a Dimesogenic Liquid Crystal

  • Kyung Oh Kim
  • Dong Min Choi
  • Cheol Eui Lee
  • Jung-Il Jin


1H nuclear magnetic resonance (NMR) was employed in order to probe an incommensuratecommensurate phase transition in a dimesogenic liquid crystal, N-[4-(6-cholesteryloxycarbonyl) pentyloxy]-4-n-butylazobenzene (KI5A). The recrystallization and the isotropic phase transitions exhibited a discontinuous first-order nature in the 1H NMR spin-lattice (T1) and in the spin-spin relaxation time (T2E) measurements, and an incommensurate smectic A (SAinc) to commensurate helical smectic C (S* C ) liquid crystalline phase transition was marked by a discontinuity in the NMR line splitting representing the orientational order. Furthermore, T1 and T2E showed distinct temperature dependencies in the SAinc phase and in the S* C phase.


Dimesogenic liquid crystal 1H nuclear magnetic resonance Commensurate-incommensurate phase transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. P. F. Lagerwall and F. Giesselmann, Chem. Phys. Chem. 7, 20 (2006).CrossRefGoogle Scholar
  2. [2]
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1993).Google Scholar
  3. [3]
    D. Demus, J. Goodby, G. W. Gray, H-W. Spiess and V. Vill, Handbook of Liquid Crystals, Fundamentals, Vol. 1 (Wiley-VCH, New York, 1998).CrossRefGoogle Scholar
  4. [4]
    S. Kumar, Liquid Crystals: Experimental Study of Physical Properties and Phase Transitions (Cambridge University Press, Cambridge, 2000).Google Scholar
  5. [5]
    K. W. Lee, C. H. Lee, S. H. Yang, J. K. Cha, C. E. Lee and J. Kim, Curr. Appl. Phys. 1, 529 (2001).ADSCrossRefGoogle Scholar
  6. [6]
    J. K. Cha, K. W. Lee, C. E. Lee and J-I. Jin, Appl. Phys. Lett. 96, 092903 (2010).ADSCrossRefGoogle Scholar
  7. [7]
    J. K. Cha, K. W. Lee, J. H. Han, C. E. Lee, J-I. Jin and J. Y. Choi, J. Magn. 15, 61 (2010).CrossRefGoogle Scholar
  8. [8]
    F. Hardouin, M. F. Achard, J-I. Jin, J-W. Shin and Y-K. Yun, J. Phys. II France 4, 627 (2994).CrossRefGoogle Scholar
  9. [9]
    F. Hardouin, M. F. Achard, J-I. Jin and Y-K. Yun, J. Phys. II France 5, 927 (1995).CrossRefGoogle Scholar
  10. [10]
    Y. Maeda, Y-K. Yun and J-I. Jin, Thermochimica Acta 322, 101 (1998).CrossRefGoogle Scholar
  11. [11]
    I-H. Oh, J. J. Kweon, B. H. Oh and C. E. Lee, J. Korean Phys. Soc. 53, 3497 (2008).ADSCrossRefGoogle Scholar
  12. [12]
    D. Y. Han, J. H. Han, C. E. Lee and S-H. Kim, J. Korean Phys. Soc. 53, 3246 (2008).ADSCrossRefGoogle Scholar
  13. [13]
    S. Miyajima, N. Nakamura and H. Chihara, Mol. Cryst. Liq. Cryst. 89, 151 (1982).CrossRefGoogle Scholar
  14. [14]
    P. Pincus, Solid State Commun. 7, 415 (1969).ADSCrossRefGoogle Scholar
  15. [15]
    P. Ukleja, J. Pirs and J. W. Doane, Phys. Rev. A 14, 44 (1976).CrossRefGoogle Scholar
  16. [16]
    R. Y. Dong, M. Wiszniewska and E. Tomchuk, J. Chem. Phys. 59, 6266 (1973).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Kyung Oh Kim
    • 1
  • Dong Min Choi
    • 1
  • Cheol Eui Lee
    • 1
  • Jung-Il Jin
    • 2
  1. 1.Department of PhysicsKorea UniversitySeoulKorea
  2. 2.Department of ChemistryKorea UniversitySeoulKorea

Personalised recommendations