Advertisement

Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 805–810 | Cite as

Comparison of Image Enlargement according to 3D Reconstruction in a CT Scan: Using an Aneurysm Phantom

  • Seong-yong Lee
  • Ham-Gyum Kim
  • Hwa-Sun Kim
  • Jae-Ho Choi
  • Jae-Hwan Cho
Article
  • 22 Downloads

Abstract

The purpose of this study was to evaluate the magnification of an aneurysm size according to the type of reconstruction of a 3-dimensional Computed tomography (CT) scan. The aneurysm was prepared by mixing angiografin and saline in a rubber balloon of 51 mm in width and 77 mm in length. The balloon was placed in a plastic barrel and fixed with paraffin. CT scans were used to obtain scan data of the balloons, and the multi planar reformation (MPR), maximum intensity projection (MIP), shaded surface display (SSD), and volume rendering technique (VRT) were obtained by using 3D reconstruction. The size of the measurement points was measured and compared with the measured values of the actual aneurysm phantom. As a result of the comparison between measured and actual values in the 3D reconstruction images, all of them were enlarged. The VRT method displayed the smallest enlargement. On the other hand, the sagittal images that were obtained using the MPR method displayed an average difference of about 5.32 mm in transverse length and an average transverse length of about 2.72 mm. In conclusion, the reconstruction technique that produced an aneurysm size similar to the actual size was the VRT, and the reconstruction of the aneurysm using the VRT could be performed three-dimensionally and compared with other techniques. Therefore, observation of the anatomical site is excellent. In addition, the size determined from the enlargement of the reconstructed image was similar to the actual size; therefore, it can be helpful for establishing an effective treatment plan.

Keywords

Aneurysm 3D reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Hsieh, Med. Phys. 23, 221 (1996).CrossRefGoogle Scholar
  2. [2]
    D. R. Ney, E. K. Fishman, D. Magid, D. D. Robertson and A. Kawashima, J. Comput. Assist. Tomogr. 15, 875 (1991).CrossRefGoogle Scholar
  3. [3]
    P. S. Calhoun, B. S. Kuszyk, D. G. Heath, J. C. Carley and E. K. Fishman, Radiographics 19, 745 (1999).CrossRefGoogle Scholar
  4. [4]
    Y. K. Kim, S. K. Baik, Mi Jeong Shin and H. Y. Choi, J. Korean Radiol. Soc. 44, 665 (2001).CrossRefGoogle Scholar
  5. [5]
    D. Sforza, Annu. Rev. Fluid Mech. 41, 91 (2009).ADSCrossRefGoogle Scholar
  6. [6]
    T. Ogawa, T. Okudera, K. Noguchi, N. Sasaki, A. Inugami, K. Uemura and N Yasui, Am. J. Neuroradiol. 17, 447 (1996).Google Scholar
  7. [7]
    J. N. Hsiang, E. Y. Liang, J. M. Lam, X. L. Zhu and W. S. Poon, Neurosurgery 38, 481 (1996).Google Scholar
  8. [8]
    S. C. Rankin, Eur. J. Radiol. 28, 18 (1998).CrossRefGoogle Scholar
  9. [9]
    G. D. Rubin, S. Napel and A. N. Leung, Radiology 200, 312 (1996).CrossRefGoogle Scholar
  10. [10]
    G. D. Rubin, Multi-slice helical tomography: a practical approach to clinical protocols (Lippincott Williams & Wilkins, Philadelphia, Pa, 2002), p. 317Google Scholar
  11. [11]
    N. C. Dalrymple, S. R. Prasad, M. W. Freckleton and K. N. Chintapalli, Radiographics 25, 1409 (2005).CrossRefGoogle Scholar
  12. [12]
    M. Levoy, IEEE Comp. Graph. Appl. 8, 29 (1988).CrossRefGoogle Scholar
  13. [13]
    J. M. de Oliveira, F. Z. C. de LimaI, J. A. de Milito and A. C. G. Martins, Braz. J. Phys. 35, 789 (2005).ADSGoogle Scholar
  14. [14]
    B. T. Phong, Commun. ACM. 18, 311 (1975).CrossRefGoogle Scholar
  15. [15]
    J. Blinn, Comp. Graph. 11, 192 (1977).CrossRefGoogle Scholar
  16. [16]
    L. N. Hopkins, G. Lanzino and L. R. Guterman, Neurosurgery 48, 463 (2001).CrossRefGoogle Scholar
  17. [17]
    J. Y. Kim, D. K. Lee and S. H. Lee, J. Korean Assoc. Oral. Maxillofac. Surg. 36, 262 (2010).CrossRefGoogle Scholar
  18. [18]
    M. G. P. Cavalcanti and M. W. Vanner, Dentomaxillofac. Radiol. 27, 344 (1998).CrossRefGoogle Scholar
  19. [19]
    S. Nawaratne, R. Fabiny, J. E. Brien, J. Zalcberg, W. Cosolo, A. Whan and D. J. Morgan, J. Comput. Assist. Tomogr. 21, 481 (1997).CrossRefGoogle Scholar
  20. [20]
    S. R. Matteson, W. Bechtold and C. Philips, J. Oral. Maxillofac. Surg. 47, 1053 (1989).CrossRefGoogle Scholar
  21. [21]
    C. F. Hildebolt, M. W. Vannier and R. H. Knapp, Am. J. Phys. Anthropol. 82, 283 (1990).CrossRefGoogle Scholar
  22. [22]
    E. K. Fishman, B. Drebin and D. Magid, Radiology 163, 737 (1987).CrossRefGoogle Scholar
  23. [23]
    G. D. Rubin, Eur. J. Radiol. 45, S37 (2003).CrossRefGoogle Scholar
  24. [24]
    G. D. Rubin, M. D. Dake and C. P. Semba, Radiol. Clin. North Am. 33, 51 (1995).Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Seong-yong Lee
    • 1
  • Ham-Gyum Kim
    • 1
  • Hwa-Sun Kim
    • 1
  • Jae-Ho Choi
    • 1
  • Jae-Hwan Cho
    • 1
  1. 1.Department of Radiological TechnologyAnsan UniversityAnsanKorea

Personalised recommendations