Skip to main content
Log in

Comparison of Image Enlargement according to 3D Reconstruction in a CT Scan: Using an Aneurysm Phantom

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the magnification of an aneurysm size according to the type of reconstruction of a 3-dimensional Computed tomography (CT) scan. The aneurysm was prepared by mixing angiografin and saline in a rubber balloon of 51 mm in width and 77 mm in length. The balloon was placed in a plastic barrel and fixed with paraffin. CT scans were used to obtain scan data of the balloons, and the multi planar reformation (MPR), maximum intensity projection (MIP), shaded surface display (SSD), and volume rendering technique (VRT) were obtained by using 3D reconstruction. The size of the measurement points was measured and compared with the measured values of the actual aneurysm phantom. As a result of the comparison between measured and actual values in the 3D reconstruction images, all of them were enlarged. The VRT method displayed the smallest enlargement. On the other hand, the sagittal images that were obtained using the MPR method displayed an average difference of about 5.32 mm in transverse length and an average transverse length of about 2.72 mm. In conclusion, the reconstruction technique that produced an aneurysm size similar to the actual size was the VRT, and the reconstruction of the aneurysm using the VRT could be performed three-dimensionally and compared with other techniques. Therefore, observation of the anatomical site is excellent. In addition, the size determined from the enlargement of the reconstructed image was similar to the actual size; therefore, it can be helpful for establishing an effective treatment plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hsieh, Med. Phys. 23, 221 (1996).

    Article  Google Scholar 

  2. D. R. Ney, E. K. Fishman, D. Magid, D. D. Robertson and A. Kawashima, J. Comput. Assist. Tomogr. 15, 875 (1991).

    Article  Google Scholar 

  3. P. S. Calhoun, B. S. Kuszyk, D. G. Heath, J. C. Carley and E. K. Fishman, Radiographics 19, 745 (1999).

    Article  Google Scholar 

  4. Y. K. Kim, S. K. Baik, Mi Jeong Shin and H. Y. Choi, J. Korean Radiol. Soc. 44, 665 (2001).

    Article  Google Scholar 

  5. D. Sforza, Annu. Rev. Fluid Mech. 41, 91 (2009).

    Article  ADS  Google Scholar 

  6. T. Ogawa, T. Okudera, K. Noguchi, N. Sasaki, A. Inugami, K. Uemura and N Yasui, Am. J. Neuroradiol. 17, 447 (1996).

    Google Scholar 

  7. J. N. Hsiang, E. Y. Liang, J. M. Lam, X. L. Zhu and W. S. Poon, Neurosurgery 38, 481 (1996).

    Google Scholar 

  8. S. C. Rankin, Eur. J. Radiol. 28, 18 (1998).

    Article  Google Scholar 

  9. G. D. Rubin, S. Napel and A. N. Leung, Radiology 200, 312 (1996).

    Article  Google Scholar 

  10. G. D. Rubin, Multi-slice helical tomography: a practical approach to clinical protocols (Lippincott Williams & Wilkins, Philadelphia, Pa, 2002), p. 317

    Google Scholar 

  11. N. C. Dalrymple, S. R. Prasad, M. W. Freckleton and K. N. Chintapalli, Radiographics 25, 1409 (2005).

    Article  Google Scholar 

  12. M. Levoy, IEEE Comp. Graph. Appl. 8, 29 (1988).

    Article  Google Scholar 

  13. J. M. de Oliveira, F. Z. C. de LimaI, J. A. de Milito and A. C. G. Martins, Braz. J. Phys. 35, 789 (2005).

    ADS  Google Scholar 

  14. B. T. Phong, Commun. ACM. 18, 311 (1975).

    Article  Google Scholar 

  15. J. Blinn, Comp. Graph. 11, 192 (1977).

    Article  Google Scholar 

  16. L. N. Hopkins, G. Lanzino and L. R. Guterman, Neurosurgery 48, 463 (2001).

    Article  Google Scholar 

  17. J. Y. Kim, D. K. Lee and S. H. Lee, J. Korean Assoc. Oral. Maxillofac. Surg. 36, 262 (2010).

    Article  Google Scholar 

  18. M. G. P. Cavalcanti and M. W. Vanner, Dentomaxillofac. Radiol. 27, 344 (1998).

    Article  Google Scholar 

  19. S. Nawaratne, R. Fabiny, J. E. Brien, J. Zalcberg, W. Cosolo, A. Whan and D. J. Morgan, J. Comput. Assist. Tomogr. 21, 481 (1997).

    Article  Google Scholar 

  20. S. R. Matteson, W. Bechtold and C. Philips, J. Oral. Maxillofac. Surg. 47, 1053 (1989).

    Article  Google Scholar 

  21. C. F. Hildebolt, M. W. Vannier and R. H. Knapp, Am. J. Phys. Anthropol. 82, 283 (1990).

    Article  Google Scholar 

  22. E. K. Fishman, B. Drebin and D. Magid, Radiology 163, 737 (1987).

    Article  Google Scholar 

  23. G. D. Rubin, Eur. J. Radiol. 45, S37 (2003).

    Article  Google Scholar 

  24. G. D. Rubin, M. D. Dake and C. P. Semba, Radiol. Clin. North Am. 33, 51 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hwan Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Sy., Kim, HG., Kim, HS. et al. Comparison of Image Enlargement according to 3D Reconstruction in a CT Scan: Using an Aneurysm Phantom. J. Korean Phys. Soc. 72, 805–810 (2018). https://doi.org/10.3938/jkps.72.805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.805

Keywords

Navigation