Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 795–799 | Cite as

Analyses of the Structural and the Temperature-Dependent Magnetic Properties of Pine Resin and Pine Bark from the Oltu/Erzurum Region in Turkey

  • Zeynep Aygun
  • Necmi Yarbasi


In the present paper, our aim is to investigate the structural, compositional and temperaturedependent magnetic properties of pine resin and pine bark obtained from a yellow pine forest situated in Oltu/Erzurum, a tertiary depositional area, located on the central area of the Northeast Anatolian Fault Zone. With the purpose of understand the regional effects on pine resin and pine bark obtained from a yellow pine forest, electron paramagnetic resonance spectroscopy is used to determine paramagnetic features at different temperatures (room temperature, 65 ◦ C, 75 ◦ C and 85 ◦ C). An X-ray diffraction experiment is performed to obtain the crystalline nature of the resin and the bark. Also, scanning electron microscopy and energy dispersive spectroscopy methods are preferred for analyzing the surface morphology and the elemental composition of the samples, respectively.


Electron paramagnetic resonance and relaxation Scanning electron microscopy (SEM) X-ray diffraction (XRD) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Maiti, S. S. Ray and A. K. Kundu, Progress Polymer Sci. 14, 297 (1989).CrossRefGoogle Scholar
  2. [2]
    S. V. Fulzele, P. M. Satturwar and A. K. Dorle, Inter. J. Pharmaceutics, 249, 175 (2002).CrossRefGoogle Scholar
  3. [3]
    Y. Gaillard et al., Thermochim. Acta 521, 90 (2011).CrossRefGoogle Scholar
  4. [4]
    N. Yarbasi, J. Eng. Sci. 22, 538 (2016).Google Scholar
  5. [5]
    B. Commoner et al., Sci. 3263, 57 (1957).ADSCrossRefGoogle Scholar
  6. [6]
    Y. Shimoyama, M. Ukai and H. Nakamura, Radiat. Phys. Chem. 76, 1837 (2007).ADSCrossRefGoogle Scholar
  7. [7]
    M. Ukai, H. Kameya, H. Nakamura and Y. Shimoyam, Spectrochim. Acta A 69, 1417 (2008).ADSCrossRefGoogle Scholar
  8. [8]
    F. Callens, G. Vanhaelewyn, P. Matthys and E. Boesman, Appl. Magn. Reson. 14, 235 (1998).CrossRefGoogle Scholar
  9. [9]
    M. Jerzykiewicz, J. Drozd and A. Jezierski, Chemosphere 39, 253 (1999).ADSCrossRefGoogle Scholar
  10. [10]
    Z. Yarbasi, B. Karabulut and A. Karabulut, Gazi Unv. J. Sci. 24, 203 (2011).Google Scholar
  11. [11]
    Z. Aygun, Spectrochim. Acta A 104, 130 (2013).ADSCrossRefGoogle Scholar
  12. [12]
    M. Devadas et al., Cataly. Today 119, 137 (2007).CrossRefGoogle Scholar
  13. [13]
    R. S. T. Manhaes et al., Appl. Clay Sci. 21, 303 (2002).CrossRefGoogle Scholar
  14. [14]
    A. Krupska, Molecular Phys. Rep. 41, 104 (2005).Google Scholar
  15. [15]
    C. M. Lee et al., Biotech. Lett. 27, 1487 (2005).CrossRefGoogle Scholar
  16. [16]
    B. S. Kaith, R. Jindal and R. Sharma, Royal Soc. Chem. 5, 43092 (2015).Google Scholar
  17. [17]
    L. Wang et al., The Royal Soc. Chem. 1, 1 (2014).Google Scholar
  18. [18]
    O. I. Micic, Y. Zhang, K. R. Cromack, A. D. Trifunac and M. C. Thurnauer, J. Phys. Chem. 97, 7277 (1993).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Vocational School of Technical SciencesBitlis Eren UniversityBitlisTurkey
  2. 2.Geological Engineering DepartmentAtaturk University, Oltu Earth Sciences FacultyOltu-ErzurumTurkey

Personalised recommendations