Advertisement

Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 775–779 | Cite as

Electronic and Thermal Properties of Si-doped InSe Layered Chalcogenides

  • Joonyeon Yoo
  • Ji-il Kim
  • Hyun-jun Cho
  • Sung-sil Choo
  • Sang-il Kim
  • Kimoon Lee
  • Weon Ho Shin
  • Hyun-Sik Kim
  • Jong Wook Roh
Article
  • 42 Downloads

Abstract

Layered metal chalcogenide materials have attracted significant attention as potential thermoelectric materials owing to their intrinsic low thermal conductivity because of their weak atomic bonding between layers. Indium selenide (InSe) crystals are known to have a low thermal conductivity in the range ~ 0.37 - 1.2 Wm−1K−1, and their intrinsic carrier concentration is quite low (~ 1014 cm−3) owing to a relatively large bandgap of 1.2 eV. Therefore, InSe-based materials can be good candidates for thermoelectric materials if the carrier concentration can be increased by appropriate doping. In this work, we investigated the electronic and thermal properties of a series of Si-doped InSe polycrystalline samples In1−xSi x Se with nominal x = 0.01, 0.02, 0.04, and 0.08. The cation substitution with Si increased the electrical conductivity of InSe to 8.5 S/cm at 795 K while decreasing the activation energy for the electrical conductivity. The negative Seebeck coefficient increased as Si doping increased, resulting in a significant enhancement in the power factor. A slight reduction in thermal conductivity was also observed with doping. Consequently, the expected thermoelectric figure of merit zT value was expected as high as ~ 0.16 for x = 0.08 at 765 K, which offers the possibility of InSe-based thermoelectric materials.

Keywords

Thermoelectric Indium selenide Doping Thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Chirtescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinsk and P. Zschack, Science 315, 351 (2007).ADSCrossRefGoogle Scholar
  2. [2]
    J. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim and G. Kotliar, Nature 459, 965 (2009).ADSCrossRefGoogle Scholar
  3. [3]
    Y. Luo, J. Yang, G. Li, M. Liu, Y. Xiao, L. Fu, W. Li, P. Zhu, J. Peng, S. Gao and J. Zhang, Adv Energy Mater 4, 1300599 (2014).CrossRefGoogle Scholar
  4. [4]
    L. Zhao, S. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, Nature 508, 373 (2014).ADSCrossRefGoogle Scholar
  5. [5]
    L. Zhao, C. Chang, G. Tan and M. G. Kanatzidis, Energy Environ. Sci. 9, 3044 (2016).CrossRefGoogle Scholar
  6. [6]
    D. P. Spitzer, J. Phys. Chem. Solids 31, 19 (1970).ADSCrossRefGoogle Scholar
  7. [7]
    G. Han, Z. G. Chen, J. Drennan and J. Zou, Small 10, 2747 (2014).CrossRefGoogle Scholar
  8. [8]
    H. G. Si, Y. X. Wang, Y. L. Yan and G. B. Zhang, J. Phys. Chem. C 116, 3956 (2012).CrossRefGoogle Scholar
  9. [9]
    R.W. Damon and R.W. Redington, Phys. Rev. 96, 1498 (1954).ADSCrossRefGoogle Scholar
  10. [10]
    X. Hou, S. Chen, Z. Du, X. Liu and J. Cui, RSC Adv. 5, 102856 (2015).CrossRefGoogle Scholar
  11. [11]
    J. Riera, A. Segura and A. Chevy, Appl. Phys. A 54, 428 (1992).ADSCrossRefGoogle Scholar
  12. [12]
    J. Riera, A. Segura and A. Chevy, Phys. Stat. Sol. (a) 142, 265 (1994).ADSCrossRefGoogle Scholar
  13. [13]
    A. V. Tyurin, K. S. Gavrichev and V. P. Zlomanov, Inorganic Materials 43, 921 (2007).CrossRefGoogle Scholar
  14. [14]
    A. I. Dmitriev, G. V. Lashkarev, A. A. Baida and Z. D. Kovalyuk, J. Appl. Phys. 92, 5110 (2002).ADSCrossRefGoogle Scholar
  15. [15]
    A. Segura, B. Mari and J. Martinez-Pastor, Phys. Rev. B 43, 4953 (1991).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Joonyeon Yoo
    • 1
  • Ji-il Kim
    • 1
  • Hyun-jun Cho
    • 1
  • Sung-sil Choo
    • 1
  • Sang-il Kim
    • 1
  • Kimoon Lee
    • 2
  • Weon Ho Shin
    • 3
  • Hyun-Sik Kim
    • 4
  • Jong Wook Roh
    • 4
  1. 1.Department of Materials Science and EngineeringUniversity of SeoulSeoulKorea
  2. 2.Department of PhysicsKunsan National UniversityKunsanKorea
  3. 3.Energy Materials Center, Energy and Environment DivisionKorea Institute of Ceramic Engineering & TechnologyJinjuKorea
  4. 4.Samsung ElectronicsSuwonKorea

Personalised recommendations